Пусть v1 км/ч - скорость лодки, а v2 км/ч - скорость течения. Тогда при следовании лодки по течению её скорость составила v1+v2 км/ч, а при следовании против течения - v1-v2 км/ч. Так как 1 час 24 минуты = 1,4 часа, то по условию 30/(v1+v2)=1,2 и 30/(v1-v2)=1,4. Получена система уравнений:
30/(v1+v2)=1,2 30/(v1-v2)=1,4
v1+v2=30/1,2=25 v1-v2=30/1,4=300/14=150/7
Сложив эти два уравнения и заменив получившимся уравнением первое уравнение системы, получим:
2*v1=325/7 v1-v2=150/7
Из первого уравнения находим v1=325/(2*7)=325/14 км/ч. Подставляя это выражение во второе уравнение, получаем:
Пусть x км/ч - скорость 1-го поезда, y км/ч - скорость 2-го поезда.
Известно, что на половину пути (120 / 2 = 60 км) первый поезд затратил на 2 часа больше, чем второй, т.е. справедливо уравнение: \frac{60}{x}- \frac{60}{y} =2
После встречи поезда едут в разные стороны ровно 1 час и расстояние между ними становится 80 км, т.е. справедливо уравнение: x*1+y*1=80
ответ: 65° .
Объяснение:
∠АВС=90° , ∠АВД=(5/18)*∠АВС=(5/18)*90°=25°
∠ДВС=∠АВС-∠АВД=90°-25°=65°