Пусть a см - длина одной из сторон прямоугольника. Тогда длина второй его стороны равна b = (a + 3) см.
Площадь прямоугольника может быть найдена по формуле:
S = a * (a + 3);
S = a^2 + 3 * a.
Подставим известные значения и решим получившееся уравнение:
54 = a^2 + 3 * a;
a^2 + 3 * a - 54 = 0;
D = 3^2 - 4 * 1 * (-54) = 9 + 216 = 225;
a1 = (-3 + 15) / (2 * 1) = 12 / 2 = 6;
a2 = (-3 - 15) / (2 * 1) = -18 / 2 = -9.
Так как длина стороны прямоугольника не может быть отрицательной, то корень a2 = -9 не является решением задачи. Таким образом, одна из сторон прямоугольника равна a = 6 см. Тогда вторая его сторона равна b = 6 + 3 = 9 см.
Периметр прямоугольника найдём по формуле:
P = 2 * (a + b);
P = 2 * (6 + 9) = 30 см.
ответ: a = 6 см; b = 9 см; P = 30 см.
Объяснение:
ответ: 78 минут.
Объяснение:
пусть за (х) минут вторая труба наполняет резервуар;
тогда первая труба наполняет резервуар за (х+13) минут;
вторая труба за одну минуту наполняет (1/x) часть резервуара,
первая труба за одну минуту наполняет (1/(х+13)) часть резервуара;
вместе они наполняют за одну минуту (1/42) часть резервуара:
(1/x) + (1/(x+13)) = 1/42
x(x+13) = 42*(2x+13)
x^2 - 71x - 42*13 = 0
по т.Виета корни (-7) и (78)
х = 78 минут
Проверка:
за одну минуту
вторая труба наполняет (1/78) часть резервуара;
первая труба наполняет (1/91) часть резервуара;
(1/78) + (1/91) = (7+6) / (6*7*13) = 1/42