М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
veraeliseeva718
veraeliseeva718
01.03.2022 05:56 •  Алгебра

Выражение и найдите его значение -12(m-2)+3(5m+8) при m=-2/3

👇
Ответ:
-12(m-2)+3(5m+8)=-12m+24+15m+24=3m+48
m=- \frac{2}{3}

3m+48=3*(- \frac{2}{3} )+48=-2+48=46

ответ: 46
4,4(14 оценок)
Открыть все ответы
Ответ:
1)  Находим первую производную функции:
y' = -3x²+12x+36
Приравниваем ее к нулю:
-3x²+12x+36 = 0
x₁ = -2
x₂ = 6
Вычисляем значения функции на концах отрезка
f(-2) = -33
f(6) = 223
f(-3) = -20
f(3) = 142
ответ:   fmin = -33, fmax = 142
2)  
a) 1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = - 6x+12
Находим нули функции. Для этого приравниваем производную к нулю
- 6x+12 = 0
Откуда:
x₁ = 2
(-∞ ;2)   f'(x) > 0   функция возрастает
(2; +∞)    f'(x) < 0функция убывает
В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума.
б)  1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -12x2+12x
или
f'(x) = 12x(-x+1)
Находим нули функции. Для этого приравниваем производную к нулю
12x(-x+1) = 0
Откуда:
x1 = 0
x2 = 1
(-∞ ;0)   f'(x) < 0  функция убывает 
(0; 1)   f'(x) > 0   функция возрастает
 (1; +∞)   f'(x) < 0   функция убывает
В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.

3. Исследуйте функцию с производной f(x)=2x^2-3x-1
1.  D(y) = R
2.  Чётность и не чётность:
f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная
3.  Найдём наименьшее и наибольшее значение функции
Находим первую производную функции:
y' = 4x-3
Приравниваем ее к нулю:
4x-3 = 0
x₁ = 3/4
Вычисляем значения функции 
f(3/4) = -17/8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 4
Вычисляем:
y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции.
4.  Найдём промежутки возрастания и убывания функции:
1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = 4x-3
Находим нули функции. Для этого приравниваем производную к нулю
4x-3 = 0
Откуда:
x₁ = 3/4
(-∞ ;3/4)   f'(x) < 0 функция убывает
 (3/4; +∞)   f'(x) > 0   функция возрастает
В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума.
4,4(45 оценок)
Ответ:
zaobogdan
zaobogdan
01.03.2022

Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².

Выполните умножение:

1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;

2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;

3) (m - 10)(m² + 100)(m + 10) =  (m - 10)(m + 10)(m² + 100) =

    = (m² - 100)(m² + 100) = m⁴ - 10 000;

4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;

Упростите выражение:

1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;

2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².

4,7(2 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ