М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
jixeli
jixeli
16.08.2021 07:07 •  Алгебра

Найдите наименьшее и наибольшее значение функции y=9x2+6x-5

👇
Ответ:
Nikitanesh000789
Nikitanesh000789
16.08.2021
Х берем 2 получаеться у=18*2+12-5
х берем 3 получаеться у=27*2+18-5
4,4(94 оценок)
Открыть все ответы
Ответ:
дeд
дeд
16.08.2021
1. По формуле косинуса суммы:
cos(a+π/3)=сos(a)*cos(π/3)-sin(π/3)*sin(a)=cos(a)/2-(√3*sin(a))/2=(cos(a)-(√3*sin(a)))/2=(cos(a)-(√3*√(1-cos(a/2=
=(-15/17-(√3*√(1-15/17))/2=-(15+√102/17)/2=7.5+√102/32
2.Формула разности синусов
sin(a-π/4)=sin(a)*cos(π/4)-sin(π/4)*cos(a)=√2/2*(sin(a)-cos(a))
Применив основное тригонометрическое тождество
=√2/2*(1-2cos(a))=√2/2-√2*соs(a)=√2/2-√2*√(1-sin(a))=
=√2/2-√2*√(1-0.6)=√2/2-(2√5)/5
3. sin(a-b) + sin(π/2-a)*sin(b)=
Формула суммы синусов
sin(a)*cos(b)-sin(b)*cos(a)+(sin(π/2)*cos(a)-sin(a)*cos(π/2))*sinb=sin(a)*(cos(b)-sin(b)*(cos(a)-(sin(π/2)*cos(a)-sin(a)*cos(π/2))=
sin(a)*cos(b)-sin(b)*(cos(a)-(sin(π/2)*cos(a)-sin(a)*cos(π/2)))=sin(a)*cos(b)-sin(b)*(cos(a)-sin(π/2)*cos(a)+sin(a)*cos(π/2))=sin(a)*cos(b)-sin(b)*(cos(a)(1-2*sin(π/2))+cos(π/2)*(sin(a)+cos(a))=
=sin(a)*cos(b)-sin(b)*(cos(a)*(1-√2)+√2/2*(sin(a)+cos(a))=sin(a)*cos(b)-sin(b)*(cos(a)-√2/2*cos(a)+√2/2*sin(a)=sin(a)*cos(b)-sin(b)*(cos(a)*(1-√2)+√2/2*(sin(a)+cos(a))=sin(a)*(cos(b)-√2/2*sin(b))-sin(b)*(cos(a)*(1-√2)+√2/2*(cos(a)))=sin(a)*(cos(b)-√2/2*sin(b))-sin(b)*((2-√2)*cos(a))=-sin(b)*((4+√2)/2)+sin(a)*cos(b)-sin(b)*cos(a)=sin(a-b)-sin(b)*((4+√2)/2)
4,4(96 оценок)
Ответ:
snoopy201
snoopy201
16.08.2021

2. Натуральным числом. Множество натуральных чисел алгебраически замкнуто относительно операции сложения.

3. В том случае, если уменьшаемое больше вычитаемого.

4. Произведение натуральных чисел — натуральное число. Множество натуральных чисел алгебраически замкнуто относительно операции умножения.

5. Нет, не всегда. Пример: 9 не делится нацело на 5. В таком случае можно разделить с остатком, где неполное частное и остаток будут натуральными числами.

6. На единицу (нейтральный элемент в аксиоматике умножения).

4,5(3 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ