Арксинус ( y = arcsin x ) – это функция, обратная к синусу ( x = sin y ). Он имеет область определения и множество значений .
sin(arcsin x) = x
arcsin(sin x) = x
Арксинус иногда обозначают так:
.
График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арксинуса.
Арккосинус, arccosАрккосинус ( y = arccos x ) – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения и множество значений .
cos(arccos x) = x
arccos(cos x) = x
Арккосинус иногда обозначают так:
.
График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккосинуса.
ЧетностьФункция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x
Функция арккосинус не является четной или нечетной:
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x
Основные свойства арксинуса и арккосинуса представлены в таблице.
y = arcsin xy = arccos xОбласть определения– 1 ≤ x ≤ 1– 1 ≤ x ≤ 1Область значений Возрастание, убываниемонотонно возрастаетмонотонно убываетМаксимумы Минимумы Нули, y = 0x = 0x = 1Точки пересечения с осью ординат, x = 0y = 0y = π/2Таблица арксинусов и арккосинусовВ данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.
≈ 0,7071067811865476
≈ 0,8660254037844386
при или
при и
при и
при или
при и
при и
при
при
при
при
;
.
См. Вывод производных арксинуса и арккосинуса > > >
Производные высших порядков:
,
где – многочлен степени . Он определяется по формулам:
;
;
.
См. Вывод производных высших порядков арксинуса и арккосинуса > > >
Делаем подстановку x = sin t и интегрируем по частям:
.
Выразим арккосинус через арксинус:
.
При |x| < 1 имеет место следующее разложение:
;
.
Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.
Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x
cos(arccos x) = x .
Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
arcsin(sin x) = x при
arccos(cos x) = x при .
в первом Х=1, У=1
Объяснение:
треба все перемножити і зібрати до купи, має вийти:6х-12у=-6
-56+2у=-54
перше рівняння розділимо на 6 , маємо: х-2у=-1
-56х+2у=-54 а тепер складемо:
-55х=-55 х=1 , і знайдемо У, 1-2у=-1 2у=2 у=1 розвязок системи завершено.
2)перетворимо дроби і отримаємо: х+6у=32
5х-4у=-10 множимо перше на -5
-5х-30у=-160
5х-4у =-10 -34у=-170 у=5 знайдемо х -5х-150=-160 -5х=-10 х=2
системи розвязані
х1+х2=-10
х1*х2=25
х1=х2=-5
х²-4х+12=0
D=16-4*12=16-48=-32 <0 корней нет
х²-6х+7=0
D=36-4*7=8 x1=(6-2√2)/2=2(3-√2)/2=3-√2
х2=3+√2