Когда в дроби знаменатель не равен 0 и квадратный корень из отрицательного числа не извлекается; а) x^2+1/x-1>=0; x-1=0; x=1; и x^2+1 всегда больше 0, значит: x не=1 значит в х 1 не входит; и x^2+2>=0 - всегда больше 0; ответ: все числа кроме 1; б) х/|x|-3x^2>0; 1)x/x(1-3x)>0; 1/1-3x>0; 3x=1; x=1/3; x<1/3; 2) x/-x(1+3x)>=0; 1/-1-3x>0; 3x=-1; x=-1/3; x<-1/3; обьеденям множества: x<1/3 и x не равно -1/3; теперь учтем х в знаменателе и получим: х2=0; (но 0 тоже не входит) x=(-беск;-1/3) и (0;1/3); ответ: x=(-беск;-1/3) и (0;1/3)
7х-2у=0 запишем как уранение прямой с угловым коэффициентом k: y=3,5x Прямая проходит через точки (0;0) и (2;7)
3х+6у=24 запишем в виде уравнения в отрезках. Для этого делим каждое слагаемое на 24. (х/8)+(у/4)=1 Легко построить прямую. Она отсекает на осях координат отрезки: на оси ох длиной 8; на оси оу длиной 4. Прямая проходит через точки (8;0) и (0;4). См. графическое решение в приложении.
Решение сложения Умножаем первое уравнение на 3: 21х-6у=0 3х+6у=24 Складываем 24х=24 ⇒ х=1 у=3,5х=3,5·1=3,5
Пусть знаменатель дроби х, числитель (х-7). Дробь (х-7)/х. Если числитель этой дроби уменьшить на 1 , а знаменатель увеличить на 4, то получим дробь ((х-7)-1)/(х+4)=(х-8)/(х+4). По условию дробь уменьшится на 1/6. Уравнение (х-7)/х - (1/6)=(х-8)/(х+4).
Умножаем на 6х(х+4)≠0. 6(х+4)(х-7)-х(х+4)=6х(х-8); х²-26х+168=0 D=(-26)²-4·168=676-672=4. x=(26-2)/2=12 или х=(26+2)/2=14
х-7=12-7=5 или х-7=14-7=7 дробь 5/12 7/14 (5-1)/(12+4)=4/16=1/4- (7-1)/(14+4)=6/18=1/3 новая дробь (5/12)-(1/6)=(5/12)-(2/12)=3/12=1/4 (7/14)-(1/6)=(21/42)- (7/42)=14/42= =1/3
а) x^2+1/x-1>=0;
x-1=0; x=1; и x^2+1 всегда больше 0, значит:
x не=1
значит в х 1 не входит;
и x^2+2>=0 - всегда больше 0;
ответ: все числа кроме 1;
б) х/|x|-3x^2>0;
1)x/x(1-3x)>0;
1/1-3x>0;
3x=1; x=1/3;
x<1/3;
2) x/-x(1+3x)>=0;
1/-1-3x>0;
3x=-1; x=-1/3;
x<-1/3;
обьеденям множества:
x<1/3 и x не равно -1/3;
теперь учтем х в знаменателе и получим:
х2=0; (но 0 тоже не входит)
x=(-беск;-1/3) и (0;1/3);
ответ: x=(-беск;-1/3) и (0;1/3)