М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
araydaribayaray
araydaribayaray
24.10.2020 16:48 •  Алгебра

Решите что ни будь! а)15√2=? б)-8√3=? в)√25-10а+а²=? а=3,7 г)3-√3/√6-√2 д)а-25/5+√а е)2/3√5+1 - 2/3√5-1

👇
Ответ:
novakelizaveta71
novakelizaveta71
24.10.2020
А)15√2=√225•2=√450
б)-8√3=-√64·3=√192
в)√25-10а+а²=√25-10·3,7+3,7²=5-10·3,7+3,7²=(5-3,7)²
4,5(62 оценок)
Открыть все ответы
Ответ:

1)129

Объяснение:

3)Найдем значение данного выражения (-3,25 - 2,75) : (-0,6) + 0,8 * (-7) по действиям (сначала разность в скобках, затем деление, далее произведение и сумма): 1) -3,25 - 2,75 = (складываем числа по модулю и в ответе ставим знак "минус") = -6; 2) -6 : (- 0,6) = (делим по модулю и в ответе ставим знак "плюс") = 10; 3) 0,8 * (-7) = (умножаем числа по модулю и в ответе ставим знак "минус") = -5,6; 4) 10 + (-5,6) = (от модуля большего числа отнимаем модуль меньшего числа и ставим знак модуля большего числа) = 4,4. ответ: 4,4.

4,8(74 оценок)
Ответ:
funfup
funfup
24.10.2020
Короче вот пример
Какие неравенства можно решить?

Эта математическая программа подробно решает следующие неравенства с одной переменной.

Линейные
Неравенства сводящиеся к виду: \( ax+b > 0 \) (знак сравнения любой).
Например:

\( 2x-5 \leq 0 ; \)\( 2x-5 > 4-5x ; \)\( 2(x-5)+1 > 4-5x ; \)\( 2x^2-5x+7 \geq 2x^2-6x \)

Квадратные
Неравенства сводящиеся к виду: \( ax^2+bx+c > 0 \) (знак сравнения любой).
Например:

\( 2x^2+4x-5 < 0 ; \)\( 6x-1 > x^2-x ; \)\( (x-2)^2+1 \leq 3x-5; \)и такое тоже \( -4x^3-5x+7 \geq -4x^3+x^2-6x+1 \)

Дробные
Неравенства сводящиеся к виду: \( \Large \frac{a_1x^2+b_1x+c_1}{a_2x^2+b_2x+c_2}\normalsize > 0 \) (знак сравнения любой).

Коэффициенты \( a_1 \) и \( a_2 \) могут быть нулевыми, т.е. и в числителе и в знаменателе дроби может быть и линейный и квадратный многочлен.
Например:

$$ \frac{-x^2+2x-3}{4x+1} > -3x-1 ; \frac{5}{4(x+1)(x-3)-x+6} < 2x-5 ; \frac{4x^2-2}{1-x-3x^2} < 2 ; $$и т.д.

Разбитые на множители
Если в правой части - ноль, а в левой части полином(ы) разбит(ы) на линейные множители, т.е. множители вида \( ax+b \) 
Например:

$$ -(2x-1)x(x-2)^2 > 0 ; \frac{-1}{4(x+1)(x-3)^3} < 0 ; \frac{-4(2-3x)(2-x)}{x^2+x-5} \geq 0 ; $$и т.д.
4,7(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ