Логарифмы. с решением. 1) логарифм х с основанием 1/5 больше или равно x-6 2) x( в степени логарифм х² с основанием 3) -3(в степени логарифм² х с основанием 3 =6
Очевидно, что проигрывать команде нельзя. Обе ничьи её тоже не устроят. Что остаётся? 1) Победить оба раза. 2) Победить только один раз, а вторую игру свести к ничьей. Вероятность победы равна 0,4. Вероятность победить оба раза равна 0,4 · 0,4 = 0,16. Вероятность ничьей равна 1 - 0,4 - 0,4 = 0,2. Чему же равна вероятность один раз сыграть вничью и один раз победить? 0,4 · 0,2? Нет, она равна 0,4 · 0,2 + 0,2 · 0,4. Дело в том, что можно победить в первой игре, а можно и во второй, это важно. Считаем теперь вероятность выйти в следующий круг: 0,16 + 0,08 + 0,08 = 0,32.
y=5^(6-x) = (5^6)/(5^x) - убывающая функция,y=x - возрастающая,
поэтому 1 точка пересечения x=5, поэтому x≤5^(6-x) при x≤5,
объединяя с областью определения x>0, получаем 0<x≤5
2) x^log(3)(x^2) - 3^(log^2(3)(x))=6, x>0
(x^log(3)(x))^2 -x^log(3)(x) - 6 = 0, замена переменной t=x^(log(3)(x)), t>0
t^2 - t - 6=0, (t-3)(t+2)=0, t=3, x^(log(3)(x))=3, x=3, x=1/3