М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
agnesaudal
agnesaudal
28.08.2022 04:08 •  Алгебра

[0,278: 13,9+(2-0,47): 3/20]: 102,2+3,4*14/17

👇
Ответ:
tskripko
tskripko
28.08.2022
(0.02+1.53÷0.15)÷102.2+2.8=10.22÷102.2+2.8=0.1+2.8=2.9
4,7(14 оценок)
Открыть все ответы
Ответ:
aruka10511
aruka10511
28.08.2022

Количество игр: 2

:

Выигрыш (В) - 3 очка

Ничья (Н) - 1 очко

Проигрыш (П) - 0 очков

P(Н) = 0,1

Так как общая вероятность равна 1 или 100%, то:

P(В+П) = 1 - 0,1 = 0,9

По условию Р(В) = Р(П), тогда:

Р(В) = P(В+П) /2 = 0,9 / 2 = 0, 45

Р(П) = P(В+П) /2 = 0,9 / 2 = 0, 45

Команде не удасться выйти в следующий круг соревнований при следующих событиях:

1 игра - проигрыш, 2 игра - выигрыш1 игра - выигрыш, 2 игра - проигрыш1 игра -  проигрыш, 2 игра - проигрыш1 игра - ничья, 2 игра - ничья1 игра - ничья, 2 игра - проигрыш1 игра - проигрыш, 2 игра - ничья

Р(1) = Р(П) * Р(В) = 0,45 * 0,45 = 0,2025

Р(2) = Р(В) * Р(П) = 0,45 * 0,45 = 0,2025

Р(3) = Р(П) * Р(П) = 0,45 * 0,45 = 0,2025

Р(4) = Р(Н) * Р(Н) = 0,1 * 0,1 = 0,01

Р(5) = Р(Н) * Р(П) = 0,1 * 0,45 = 0,045

Р(6) = Р(П) * Р(Н) = 0,45 * 0,1 = 0,045

Вероятность того, что команде не удастся выйти в следующий круг соревнований:

Р = Р(1) + Р(2) + Р(3) + Р(4) + Р(5) + Р(6) = 0,2025 + 0,2025 + 0,2025 + 0,01 + 0,045 + 0,045 = 0,7075 = 0,71

4,7(34 оценок)
Ответ:
timati06blacstar
timati06blacstar
28.08.2022

8.58. \ 4^{x} - (2a + 1)2^{x} + a^{2} + a < 0

(2^{x})^{2} - (2a + 1)2^{x} + a^{2} + a < 0

Замена: 2^{x} = t, \ t 0

t^{2} - (2a + 1)t + a^{2} + a < 0

Имеем квадратичную функцию f(t) = t^{2} - (2a + 1)t + a^{2} + a, графиком которой является парабола с ветвями, направленными вверх.

Найдем возможные точки пересечения параболы с осью абсцисс.

Для этого решим квадратное уравнение:

t^{2} - (2a + 1)t + a^{2} + a = 0

Найдем дискриминант данного уравнения:

D = (2a + 1)^{2} -4 \cdot 1 \cdot (a^{2} + a) = 4a^{2} + 4a + 1 - 4a^{2} - 4a = 1

Имеем D = 1 0, значит данное уравнение имеет ровно 2 корня:

t_{1} = \dfrac{(2a + 1) + \sqrt{1}}{2 \cdot 1} = \dfrac{2a + 1 + 1}{2} = a + 1

t_{2} = \dfrac{(2a + 1) - \sqrt{1}}{2 \cdot 1} = \dfrac{2a + 1 - 1}{2} = a

Имеем две точки пересечения параболы с осью абсцисс.

Пусть t_{1} < t_{2}. Тогда a + 1 < a; \ 1 < 0. Имеем неверное неравенство. Следовательно, при всех значениях параметра a имеем t_{1} t_{2}.

Тогда квадратичная функция f(t) будет меньше 0 при t \in (t_{2}; \ t_{1})

Последнее можно записать так:

\displaystyle \left \{ {{t t_{2}} \atop {t < t_{1}}} \right. \ \ \ \ \ \ \ \ \ \ \left \{ {{t a \ \ \ \ \ } \atop {t < a + 1}} \right.

Обратная замена:

\displaystyle \left \{ {{2^{x} a \ \ \ \ \ } \atop {2^{x} < a + 1}} \right.

Если a \leq -1, то имеем: \displaystyle \left \{ {{x \in \mathbb{R}} \atop {x \in \varnothing }} \right.

Решением такой системы неравенств является x \in \varnothing

Если -1, то имеем: \displaystyle \left \{ {{x \in \mathbb{R} \ \ \ \ \ \ \ \ \ \ \ \ \, } \atop {x < \log_{2}(a+1)}} \right.

Решением такой системы неравенств является x < \log_{2}(a+1)

Если a 0, то имеем: \displaystyle \left \{ {{x \log_{2}a \ \ \ \ \ \ \ } \atop {x < \log_{2}(a+1)}} \right.

Решением такой системы неравенств является интервал x \in (\log_{2}a; \ \log_{2}(a+1))

если a \in (-\infty; \ -1], то нет корней;если a \in (-1; \ 0], то x \in (-\infty; \ \log_{2}(a+1));если a \in (0; \ +\infty), то x \in (\log_{2}a; \ \log_{2}(a+1)).
4,7(57 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ