Функция является чётной в том случае, если для любого x из области определения -x также входит в область определения и f(-x)=f(x). Функция является нечётной, если f(-x)=-f(x). Отсюда следует, что область определения должна быть симметрична относительно 0.
1. y= Область определения: x-5≥0 <=> x≥5. Область определения не симметрична относительно 0, поэтому функция не является чётной или нечётной.
2. y=(x+2)/(x²-16) - видимо, так должно быть. Область определения: x²-16≠0 x≠4; x≠-4 Область определения симметрична относительно 0. Проверяем на чётность: f(-x)=(-x+2)/((-x)²-16)=(-x+2)/(x²-16) ≠f(x) ≠-f(x) Функция не является чётной или нечётной.
3. y=4x-2x³+6x⁵ Область определения - вся числовая ось. f(-x) = 4(-x)-2(-x)³+6(-x)⁵=-4x+2x³-6x⁵=-(4x-2x³+6x⁵)=-f(x) Функция является нечётной.
4. y=(x²+8)/(x²-9) x²-9≠0 x≠3; x≠-3 f(-x) = ((-x)²+8)/((-x)²-9)=(x²+8)/(x²-9)=f(x) Функция является чётной.
5. (x-2)/(x²+4) x²+4≠0 - выполняется для всех x f(-x) = (-x-2)/((-x)²+4)= -(x+2)/(x²+4) ≠f(x)≠-f(x) Функция не является ни чётной, ни нечётной.
Если хотя бы одна цифра в записи 0,то произведение равно 0,а сумма равна 1,единственное такое число -1000,но оно не кратно 13. Следовательно нулей среди цифр нет ,значит все цифры не меньше 1,их сумма не меньше 4,а значит произведение цифр не меньше 3 Чтобы произведение не было меньше 3,хотя бы одна из цифр должна быть больше 1, рассмотрим числа в порядке возрастания из суммы Если сумма 5,то число записывается одной 2 и тремя 1(это 1112,1121,1211,2111) произведение цифр рвано 2,следовательно они не удовлетворяют условию Если сумма 6,записывается как одна 3 и тремя 1 ИЛИ двумя 2 и двумя 1(1113,1131,1311,3111,1122,1212,)произведения этих чисел равно 3 или 4 соответственно ,следовательно идём дальше Если сумма 7,то произведение должно 6,эти числа записываются двойкой ,тройкой и двумя единицами (2113,2131,2311,3211) число 3211 кратно 13, оно и подходит P.s расписывал не для лайков и ,не путайся в будущем ,удачи :)
встречи будет одинаковым поэтому просто t), теперь второй велосипедист у него скорость V2, а путь S2, но сказано что первый проехал на 6 км меньше, значит второй по отношению к пути первого велосипедиста проехал на 6 км больше!, отсюда S2=S1+6. Время за которое второй доехал до места встречи t=(S1+6)/V2. Теперь смотрим что происходило после встречи: первый проехал путь второго (а это S2=S1+6) за время 2 часа 24 мин (переводим в минуты 144 мин), значит 144=(S1+6)/V1. Второй в свою очередь проехал путь первого S1 за 1 час и 40 мин (это 100 мин), значит 100=S1/V2. Вот все условия записаны. Теперь из последних двух выражений выводим: V1=(S1+6)/144 и V2=S1/100. Эти данные подставляем в первые выражения и так как t у них одинаковое, то приравниваем их:S1/V1=(S1+6)/V2, подставляем V1 и V2: 144хS1/(S1+6)=100х(S1+6)/S1, из этого получаем 144хS1*2=100х(S1+6)*2, далее 12*2хS1*2=10*2х(S1+6)*2 избавляемся от квадратов получаем 12S1=10х(S1+6) отсюда 2S1=60, S1=30 км. Вот и ответ.
Функция является нечётной, если f(-x)=-f(x).
Отсюда следует, что область определения должна быть симметрична относительно 0.
1. y=
Область определения: x-5≥0 <=> x≥5.
Область определения не симметрична относительно 0, поэтому функция не является чётной или нечётной.
2. y=(x+2)/(x²-16) - видимо, так должно быть.
Область определения:
x²-16≠0
x≠4; x≠-4
Область определения симметрична относительно 0.
Проверяем на чётность:
f(-x)=(-x+2)/((-x)²-16)=(-x+2)/(x²-16) ≠f(x) ≠-f(x)
Функция не является чётной или нечётной.
3. y=4x-2x³+6x⁵
Область определения - вся числовая ось.
f(-x) = 4(-x)-2(-x)³+6(-x)⁵=-4x+2x³-6x⁵=-(4x-2x³+6x⁵)=-f(x)
Функция является нечётной.
4. y=(x²+8)/(x²-9)
x²-9≠0
x≠3; x≠-3
f(-x) = ((-x)²+8)/((-x)²-9)=(x²+8)/(x²-9)=f(x)
Функция является чётной.
5. (x-2)/(x²+4)
x²+4≠0 - выполняется для всех x
f(-x) = (-x-2)/((-x)²+4)= -(x+2)/(x²+4) ≠f(x)≠-f(x)
Функция не является ни чётной, ни нечётной.