1. х² + 4х - 5 = 0
a=1 b=4 c=-5
x0= -b/2a= -4/2×1= -4/2= -2
y0= y(x0) = (-2)²+4×(-2)-5 = -9
ответ: -2 и -9
2. x² - 8x - 9 = 0
a=1 b=-8 c=-9
x0= -b/2a = 8/2×1 = 4/2 = 2
y0= y(x0) = 2²-8×2-9 = -21
ответ: 2 и 21
3. x² + x - 6 = 0
a= 1 b=1 c=-6
x0= -b/2a = -1/2×1 = -1/2= -0,5
y0= y(x0) = -0,5²+0,5-6 = -5,75
ответ: -0,5 и -5,75
4. х² - 6x - 7 = 0
a= 1 b=-6 c=-7
x0= -b/2a= -6/2×1= -6/2= -3
y0= y(x0) = -3²-6×(-3)-7= 2
ответ: -3 и 2
5. x² + 6x - 40 = 0
a=1 b= 6 c=-40
x0= -b/2a= -6/2×1= -6/2= -3
y0= y(x0) = -3²+6×(-3)-40 = -67
ответ: -3 и -67
6. x² - x - 2 = 0
a=1 b=-1 c=-2
x0= -b/2a= 1/2×1 = 1/2 = 0,5
y0= y(x0) = 0,5²-0,5-2 = -2,25
ответ: 0,5 и -2,25
Удачи!
Пусть - канонический базис в
.
Тогда матрицу перехода можно найти следующим образом:
Если записать блочную матрицу и привести путем элементарных преобразований к виду
, то
Матрицу легко получить: достаточно записать в столбцы координаты векторов базиса
. Аналогично с матрицей
.
В итоге необходимо получить вид следующей матрицы:
Вычтем первую строку из второй и третьей:
Вычтем из первой строки 2 третьих и поменяем их местами:
Вычтем из третьей строки вторую:
Прибавим ко второй строке 2 третьих и вычтем из первой третью:
Делим вторую строку на 3:
Прибавляем в первой строке 2 вторых:
270*0,1 = 27 книг - учебники по литературе