Известно, что площадь прямоугольника равна произведению ширины на длину. Пусть: длина прямоугольника - x ширина прямоугольника - y Тогда плошадь прямоугольника равна x*y Получим систему уравнений:
1) x = 2+y 2) x*y - (x+2)*(y-4) = 40
В первом уравнении, длина больше ширины на 2 см. Во втором уравнении, разность площадей равна 40. Раскроем скобки во втором уравнении и приведём подобные члены: x*y - (x*y - 4x + 2y - 8) = 40 x*y - x*y + 4x - 2y + 8 = 40 4x - 2y = 40-8 4x - 2y = 32 (разделим на 2, получим далее) 2x - y = 16
Теперь решим эту систему уравнений:
x = 2+y 2x - y = 16
Подставим x = 2+y во второе уравнение: 2*(2+y) - y = 16 2y + 4 - y = 16 y = 12 (см) - ширина. x = y+2 = 14 (см) - длина.
Известно, что площадь прямоугольника равна произведению ширины на длину. Пусть: длина прямоугольника - x ширина прямоугольника - y Тогда плошадь прямоугольника равна x*y Получим систему уравнений:
1) x = 2+y 2) x*y - (x+2)*(y-4) = 40
В первом уравнении, длина больше ширины на 2 см. Во втором уравнении, разность площадей равна 40. Раскроем скобки во втором уравнении и приведём подобные члены: x*y - (x*y - 4x + 2y - 8) = 40 x*y - x*y + 4x - 2y + 8 = 40 4x - 2y = 40-8 4x - 2y = 32 (разделим на 2, получим далее) 2x - y = 16
Теперь решим эту систему уравнений:
x = 2+y 2x - y = 16
Подставим x = 2+y во второе уравнение: 2*(2+y) - y = 16 2y + 4 - y = 16 y = 12 (см) - ширина. x = y+2 = 14 (см) - длина.
y=f'(x0)(x-x0)+f(x) - уравнения касательной к графику функции f(x)
x0=2
f(x0)=4·2-3(2)²=8-12=-4
f'(x0)=4-2·3x0=4-12=-8
y=-8(x-2)-4
или y=-8x+12 -уравнения касательной к графику функции f(x)=4x-3x²