В решении.
Объяснение:
а) Преобразуйте выражение, чтобы получить многочлен стандартного вида. Укажите степень многочлена.
(2х² - 2)² - 4х³(х³ + х² - х - 2) + 4(х²)³ + 20х⁹/5х⁴ - 2(4х³ + 1) =
= 4х⁴ - 8х² + 4 - 4х⁶ - 4х⁵ + 4х⁴ + 8х³ + 4х⁶ + 4х⁵ - 8х³ - 2 =
= 8х⁴ - 8х² + 2. Стандартный вид. Степень (х⁴) = 4.
б) Докажите, что при любых целых значениях x многочлен делится на 2.
Так как коэффициенты при х чётные (8 и 8) и число 2 также чётное, при любых значениях х многочлен делится на 2.
в) Докажите, что при любых действительных значениях x многочлен не может принимать отрицательных значений.
Так как 8х⁴ > 8х² и степени при х чётные, то есть, сами одночлены в составе многочлена не могут быть отрицательными, при любых действительных значениях x многочлен не может принимать отрицательных значений.
В решении.
Объяснение:
а) Преобразуйте выражение, чтобы получить многочлен стандартного вида. Укажите степень многочлена.
(2х² - 2)² - 4х³(х³ + х² - х - 2) + 4(х²)³ + 20х⁹/5х⁴ - 2(4х³ + 1) =
= 4х⁴ - 8х² + 4 - 4х⁶ - 4х⁵ + 4х⁴ + 8х³ + 4х⁶ + 4х⁵ - 8х³ - 2 =
= 8х⁴ - 8х² + 2. Стандартный вид. Степень (х⁴) = 4.
б) Докажите, что при любых целых значениях x многочлен делится на 2.
Так как коэффициенты при х чётные (8 и 8) и число 2 также чётное, при любых значениях х многочлен делится на 2.
в) Докажите, что при любых действительных значениях x многочлен не может принимать отрицательных значений.
Так как 8х⁴ > 8х² и степени при х чётные, то есть, сами одночлены в составе многочлена не могут быть отрицательными, при любых действительных значениях x многочлен не может принимать отрицательных значений.
8y-8=17,8-0,6y
8y+0,6y=17,8+8
8,6y=25,8
y=25,8:8,6
y=3
2)
А) 8(х+у)=8х+8у
8x+8y=8x+8y-тождество
Б) 39(х-у)=39
39x-39y=39-не тождество
В) 8а-4=4(2а-1)
8a-4=8a-4-тождество
Г) 0,8 * 10в=8ав
8в=8ав-не тождество
ответ:Б) и Г) не являются тождествами
x(x-4)=5
x^2-4x=5
x=-1;5
ответ:В)5