У нас есть три числа, которые могут подойди: -2, 2 и 3. Проверим каждое из них. 1) Число a = -2. Подставим его в уравнение: x^2 - ((-2)^2-5*(-2))x+5*(-2) -1 = 0 Преобразуем его: x^2 -(4+10)x +-10 -1 = 0 x^2 -6x + 9=0 По теореме Виета x1 + x2 =-b ( это число перед x). В данном случае у нас получается -(-6) = 6. Следовательно а= -2 не подходит. 2) Число а =2. x^2 -(2^2 -5*2)x +5*2 -1 = 0 x^2 -(4-10)x + 10 - 1 = 0 x^2 +6x +9 = 0 Проверим это уравнение на корни. x1+x2=-b x1+x2=-6. Число а = 2 подходит. 3) Число а = 3. x^2 - (3^2 -5*3)x+5*3-1=0 x^2 -(6-15)x+ 15 - 1 = 0 x^2 + 9x + 14 = 0 x1+x2=-b x1+x2=-9. Число а = 3 не подходит. Значит ответом к данному заданию является ответ под номером 2)а=2.
1 задание 2х+6-1+х=0 3х+5=0 3х=-5 х=-5/3 ответ:(-5/3;+ бесконечности) б) х^2-4х+3. можно решать через дискриминант, можно через теорему Виетта: х1+х2=4 х1*х2=3 тогда х1=3,х2=1 Чертим ось, и чертим закрашенные точки 1 и 3. тогда методом интервалов, положительные значения будут в (-бесконечности; 1] [3;+бесконечности) 2 задание. а) возведу в квардат х+х^2-2=0 по теореме виетта: х1+х2=-1 х1*х2=-2 тогда ответ х1=-2 х2=1 б) возведу снова в квадрат 2х+8-х^2=0 умножим на -1 и тогда х^2-2х-8=0 по теореме виетта; х1+х2=2 х1*х2=-8 тогда ответ х1=4 х2=-2 3 задание. т. к. условие корень, значит область опредения будет вычисляться так. 2-5х>=0 -5х=-2 х=0,4 чертим числовую прямую и ставим закрашенную точку 0,4. тогда методом интервалов ответ (-бесконечности; 0.4]