По правилу произведения.
На первом месте может быть любая из 10 цифр, кроме ноля, значит на первом месте может быть только 9 цифр.
9.
На втором месте, может быть любая из 10 цифр, кроме той, что уже была использована на первом месте, то есть 9 цифр.
9*9.
На третьем месте, может быть любая из 10 цифр, кроме тех двух, которые были уже использованы, то есть 8 цифр.
9*9*8.
На четвертом, соответственно, 7 цифр.
9*9*8*7.
И так далее...
Имеем:
всего шестизначных номеров без повторения цифр, так что на первом месте не может быть нуль будет
9*9*8*7*6*5 = 81*56*30 = 4536*30 = 136080.
ответ. 136080.
a(n)=a1*q^(n-1)=7*(8/7)^(n-1)=(49/8)*(8/7)^n;
2) a1=3, a4=1/3, 1/3=3*q^3, q^3=1/3:3=1/9, q=, a(n)=a1*q^(n-1)=3*;
3) a1=-1, a5=-1, -1=-1*q^4, q^4=1, q=1 или q=-1,
a(n)=a1*q^(n-1)=(-1)*1^(n-1)=-1^n или a(n)=(-1)*(-1)^(n-1)=(-1)^n;
4) a1=sinα, a2=1/2sinα, q=1/2sinα : sinα=1/2,
a(n)=a1*q^(n-1)=sinα*(1/2)^(n-1)=2sinα*(1/2)^n;
5) a1=tgα, a2=1, q=1/tgα,
a(n)=a1*q^(n-1)=tgα*(1/tgα)^(n-1)=tg²α*(1/tgα)^n;
6) a1=cosα, a2=ctgα, q=ctgα/cosα=1/cosα.
a(n)=a1*q^(n-1)=cosα*(1/cosα)^(n-1)=cos²α*(1/cosα)^n.