Окружность с центром в т. O и D = 68. Хорда AB.
Расстояние OM = 30 от т. O до прямой AB.
Найти:AB - ?
Решение:Заметим, что OM ⊥ AB (так как OM - это расстояние от т. О до прямой AB - длина перпендикуляра из точки О к прямой AB).
Пусть отрезок OM лежит на радиусе OC рассматриваемой окружности. Тогда OC, как радиус, перпендикулярный хорде, пересекает эту хорду ровно в ее середине: AM = BM.
Рассмотрим прямоугольные треугольники, равные по первому признаку (или же по двум катетам OM = OM и AM = BM): ΔAOM = ΔBOM.
OA = OB = D / 2 = 68 / 2 = 34, как радиусы.
OM = 30, по условию.
Применим теорему Пифагора, например, к ΔAOM:
AM² + OM² = AO²
AM² = AO² - OM²
AM² = 34² - 30²
AM² = 256
AM = 16
Значит:
AB = AM + BM = AM + AM = 16 + 16 = 32.
Задача решена!
ответ: 32.Обозначим x,y,z длины каждого из отрезков.
Тогда:
x=0,25*y (отрезок х в 4 раза меньше чем отрезок у)
x=z+1 (отрезок х на 1 см больше чем отрезок z)
x+y+z=35
Объединяем все условия в одно и получаем систему:
Немного преобразуем ее и получим:
Подставим получившиеся выражения для y,z в последнее уравнение и получим:
x+4x+x-1=35
6x=36
x=6
Теперь найдем y и z
Получаем:
y=4*6=24
z=6-1=5
Получили решение: x=6, y=24, z=5
Теперь проверим соответсвует ли найденное решение нашим условиям:
(это надо просто устно сделать)
Действительно длина одного из отрезков (в данном случае х) в 4 раза меньше длиный другого (в данном случае у) и на 1 больше чем длина третьего (в данном случае z)
В сумме их длины дают 35 (6+24+5=35)
Значит решили верно
Длина первого отрезка = 6
Длина второго отрезка = 24
Длина третьего отрезка = 5
13х=13
х=13:13
х=1