На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::
Вроде как-то так
Объяснение:
1. Запишем начальный вес Жени как 100%.
После того, как он за весну похудел на 20%, его вес составил:
100% - 20% = 80% (от начального).
Принимаем полученный вес равный 100%
После того, как он поправился на 30%, его вес составил:
100% + 30% = 130% (от предыдущего значения).
После очередного похудания на 20% вес был равен 80% (от веса летом).
После зимы вес составил:
100% + 10% = 110% от веса осенью.
Получим: 80% * 130% / 100% = 104% (вес летом по отношению к начальному).
104% * 80% / 100% = 83,2% (вес осенью).
83,2% * 110% / 100% = 91,52% (вес зимой).
Поскольку 91,52% меньше чем 100%, его вес снизился.
2. Пусть стороны прямоугольника = х и у. S1=xy. после увеличения одна из сторон стала 1,1x, другая осталась у. S2=1,1xy. S2 - S1= 1,1ху - ху = 0,1ху. Значит, площадь увеличилась на 10%. Значения не имеет, какие стороны взять. Попробуй проделать то же самое со стороной у
3. Для решения задачи обозначим длину и ширину прямоугольника как a и b метров соответственно.
Тогда площадь прямоугольника составит:
S = ab м².
Длину данного прямоугольника увеличим на 20%, (100% + 20% = 120%).
а * 120% = 1,2а.
А его ширину уменьшим на 20%, (100% - 20% = 80%).
b * 80% = 0,8b.
Вычислим чему будет равна площадь нового прямоугольника:
S = 1,2a * 0,8b = 0,96аb м².
Вычислим разницу между площадями:
0,96аb - ab = -0,04аb м².
ответ: площадь прямоугольника уменьшилась на 4%.
(замена)
Вовзращаемся к замене:
Утверждение - неверное, поскольку не может быть отрицательным (при возведении любого числа в квадрат, оно становится положительным) ⇒ этот корень НЕ есть решением данного уравнения.
ответ: