позначимо корінь із двох як sqrt(2) 2sin( x ) + sqrt(2) = 0; 2 sin(x) = - sqrt(2) sin(x) = -sqrt(2)/2 x = -arcsin( sqrt(2)/2) x = -45 градусів
1) f'(x)=(2sinx+3)' (4-5cosx) + (2sinx+3)(4-5cosx)' = 2cosx(4-5cosx) + 5sinx(2sinx + 3) = 8cosx-10cos²x+10sin²x+15snx = 15sinx + 8cosx - 10cos 2x
2) Находим производную и приравниваем ее к нулю.
y' = -3x²-6x+24
-3х²-6х+24=0 /(-3)
x²+2x-8=0
x₁=-4 --4+
x₂=2 - не принадлежит данному промежутку
ответ. -4 - точка минимума.
3) Находим координаты точки пересечения с осью ординат.
х = 0
у(0)=2 (0;2)
Находим производную.
y' = -2x-½
y'(0) = -½
Cоставляем уравнение касательной.
y=2-(x/2)
1) f'(x)=(2sinx+3)' (4-5cosx) + (2sinx+3)(4-5cosx)' = 2cosx(4-5cosx) + 5sinx(2sinx + 3) = 8cosx-10cos²x+10sin²x+15snx = 15sinx + 8cosx - 10cos 2x
2) Находим производную и приравниваем ее к нулю.
y' = -3x²-6x+24
-3х²-6х+24=0 /(-3)
x²+2x-8=0
x₁=-4 --4+
x₂=2 - не принадлежит данному промежутку
ответ. -4 - точка минимума.
3) Находим координаты точки пересечения с осью ординат.
х = 0
у(0)=2 (0;2)
Находим производную.
y' = -2x-½
y'(0) = -½
Cоставляем уравнение касательной.
y=2-(x/2)
sinx=корень2/2
х=пи/4радиан+2пиn или 45 градусов+360n