1) sin4x + sin3x + sin2x = 0 Преобразуемой первое и последнее слагаемое по формуле суммы синусов 2sin[(4x + 2x)/2]cos[4x - 2x]/2] + sin3x = 0 2sin3xcosx+ sin3x = 0 sin3x(2cosx + 1) = 0 sin3x = 0 3x = πn, n ∈ Z x = πn/3, n ∈ Z 2cosx + 1 = 0 cosx = -1/2 x = ±2π/3 + 2πk, k ∈ Z ответ: x = πn/3, n ∈ Z; ±2π/3 + 2πk, k ∈ Z.
2) 2sin²x + 3sinxcosx + cos²x = 0 |:cos²x 2tg²x + 3tgx + 1 = 0 2tg²x + 2tgx + tgx + 1 = 0 2tgx(tgx + 1) + (tgx + 1) = 0 (2tgx + 1)(tgx + 1) = 0 2tgx + 1 = 0 tgx = -1/2 x = arctg(-1/2) + πn, n ∈ Z. tgx + 1 = 0 tgx = -1 x = -π/4 + πk, k ∈ Z. ответ: arctg(-1/2) + πn, n ∈ Z; -π/4 + πk, k ∈ Z.
1.нет. По признаку деления числа на 3 оба числа делятся на 3(на число отличное от них самих и 1), так как сумма цифр єтих чисел делится на 3. Значит они составные, а не простые. Число 20012345 составное, так как последняя цифра 5, по признаку деления на 5, это число делится на 5(на число отличное от 1 и себя). Оно составное. 111111111 - делится на 3(или на 9) по признаку делимости на 3(на 9). составное. Т.е. не являются простыми
Первые 25 простых числе в порядке возрастания 2,3,5,7,11(первые пять), 13,17,19,23,29,(вторые пять) 31,37, 41,43,47,(третьи пять) 53, 59, 61, 67, 71(четвертые пять) 73, 79, 83, 89, 91(пятые пять)
x+y=17 => x=17-y
Используем т.Пифагора
ответ: (5;12) или (12;5)