2x/(x+1) + 3x/(x-1) = 6x/(x^2 -1) Приведем к общему знаменателю: (2x^2 - 2x + 3x^2 + 3x)/(x^2 - 1) = 6x/(x^2 - 1), т.е. (5x^2 + x)/(x^2 -1) = 6x/(x^2 - 1) , перенесем все в одну сторону: (5x^2 + x - 6x)/(x^2 -1) = 0 Решением будет решение системы : 5x^2 - 5x = 0 x^2 - 1 не равно 0, т.к. на ноль делить нельзя, т.е. х не может равняться 1 или -1. 5x^2 - 5x = 5x*(x-1) = 0, отсюда х1 = 0, х2 = 1, но х не может равняться единице, следовательно, имеем единственный корень х = 0
Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
(x+2a)/(x-6) = a+3. ОДЗ. x не=6. (x+2a) = (a+3)*(x-6); <=> x+ 2a = ax -6a + 3x - 18, <=> 2a+6a+18 = 3x-x + ax, <=> 8a+18 = 2x+ax, <=> 8a+18 = x*(a+2), 1. a=-2, тогда имеем 8*(-2)+18 = x*0, <=> 2=0, это ложное равенство, которое невозможно в принципе. Это означает, что в 1. решений нет. 2. a не= -2, тогда имеем. x=(8a+18)/(a+2). Единственное решение. НО нужно проверить решение на область допустимых значений (ОДЗ). (8a+18)/(a+2) не= 6, <=> (8a+18) не=6*(a+2), <=> 8a + 18 не= 6a+12; <=> 8a-6a не=12 - 18, <=> 2a не=-6, <=> a не= -6/2 = -3. a не=-3. 3. При a = -3, имеем x=6, которое не входит в ОДЗ и поэтому при а=-3 решений нет. ответ. При а=-2, или а=-3 решений нет; при a<-3 или (-3)<a<-2 или a>(-2), единственное решение x=(8a+18)/(a+2).
(2x^2 - 2x + 3x^2 + 3x)/(x^2 - 1) = 6x/(x^2 - 1), т.е.
(5x^2 + x)/(x^2 -1) = 6x/(x^2 - 1) , перенесем все в одну сторону:
(5x^2 + x - 6x)/(x^2 -1) = 0
Решением будет решение системы :
5x^2 - 5x = 0
x^2 - 1 не равно 0, т.к. на ноль делить нельзя, т.е. х не может равняться 1 или -1.
5x^2 - 5x = 5x*(x-1) = 0, отсюда х1 = 0, х2 = 1, но х не может равняться единице, следовательно, имеем единственный корень х = 0