М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
алма15
алма15
30.04.2021 20:25 •  Алгебра

Решите побыстрее) несколько школьников обрабатывали работы окружной олимпиады. каж- дый школьник обрабатывает 30 работ в час. через час после начала работы некоторые школьники ушли домой. ещё через час такое же количество школьников ушло домой. то же самое произошло и в конце третьего часа. в результате, 1775 работ были об- работаны за 3 часа и 10 минут. сколько работ было обработано за первые полтора часа?

👇
Ответ:
Мышка007
Мышка007
30.04.2021
Всего было n школьников. За 1 час они обработали 30n работ.
Через 1 час x школьников ушли домой. Осталось (n-x) школьников.
За второй час они обработали 30(n-x) работ, а за 0,5 ч - 15(n-x).
За первые 1,5 часа они обработали 30n + 15(n-x) = 45n - 15x работ.
Пока просто запомним это, хотя посчитать мы еще не можем.
Через 2 часа ушло еще x школьников. Осталось (n-2x) школьников.
За третий час они обработали 30*(n-2x) работ.
И снова ушло x школьников. Осталось (n-3x) школьников.
И они закончили за 10 мин = 1/6 ч, а обработали 30/6*(n-3x) = 5n - 15x.
Всего за 3 ч 10 мин они обработали 1775 работ.
30n + 30(n-x) + 30(n-2x) + 5n - 15x = 1775
95n - 105x = 1775
Делим на 5
19n - 21x = 355
n = (355 + 21x)/19 = 18 + x + (13 + 2x)/19
Чтобы n было целым, нужно, чтобы 13 + 2x делилось на 19.
x = 3; n = 18 + 3 + 1 = 22 - подходит для количества учеников.
x = 22; n = 18 + 22 + 3 = 53 - слишком много.
Таким образом, всего было 22 ученика, каждый час уходило 3.
За первые 1,5 часа они сделали 45n - 15x = 45*22 - 15*3 = 945 работ.
4,7(49 оценок)
Открыть все ответы
Ответ:
Malayalam
Malayalam
30.04.2021

ответ:

объяснение:

вопрос 1. как называется число, которое показывает, какая у числа степень? (показатель степени).

вопрос 2. вторая степень числа? (квадрат)

вопрос 3. третья степень числа? (куб)

вопрос 4. расстояние от земли до луны равняется 150 000 000 млн км . как называется короткая запись 1,5 * 10^8 км? (стандартный вид числа).

вопрос 5. сколько будет два в квадрате? (четыре).

вопрос 6. при умножении чисел показатели (складываются).

вопрос 7. при делении чисел показатели (вычитаются).

вопрос 8. при возведении в какую степень любое число станет единицей? (в нулевую).

вопрос 9. сколько будет 1000 в степени ноль? (один)

вопрос 10. сколько будет 10 в минус первой? (0,1)

на этом моя фантазия закончилась.

4,6(97 оценок)
Ответ:
AAndrey7600
AAndrey7600
30.04.2021

ответ: 7.11.  в ящику знаходиться 12 деталей, виготовлених заводом №1, 20 деталей – заводом №2 і 18 – заводом №3. ймовірність того, що деталь, виготовлена заводом №1, відмінної якості, дорівнює 0,9; для деталей, виготовлених на заводах №2 і №3, ці ймовірності відповідно дорівнюють 0,6 і 0,9. знайти ймовірність того, що взята навмання деталь виявиться відмінної якості.

7.12.  в першій урні знаходиться 10 куль, 8 із яких білі; в другій урні 20 куль, із них 4 білі. із кожної урни навмання беруть по одній кулі, а потім із цих двох куль навмання беруть одну. знайти ймовірність того, що витягли білу кулю.

7.13.  у кожній із трьох урн знаходиться 6 чорних і 4 білих кулі. із першої урни навмання витягли одну кулю і переклали її в другу урну, після цього із другої урни навмання витягли одну кулю і переклали в третю урну. знайти ймовірність того, що куля, навмання взята із третьої урни, буде білою.

в городе екатеринбург он ожил на своих похоронах

люди попадали в обмороки, когда он

7.14.  ймовірність того, що під час роботи цифрової електронної машини відбудеться збій в арифметичному пристрої, в оперативній пам’яті, в інших пристроях, співвідносяться як 3: 2: 5. ймовірність того, що збій буде знайдено в арифметичному пристрої, в оперативній пам’яті, в інших пристроях відповідно дорівнює 0,8: 0,9: 0,9. знайти ймовірність того, що збій в машині буде знайдено.

7.15.  продукція виготовляється на двох підприємствах і надходить на спільну базу. ймовірність виготовлення бракованої продукції для першого підприємства дорівнює 0,1, для другого – 0,2. перше підприємство здало на склад 100 одиниць продукції, друге – 400. знайти ймовірність того, що навмання взята зі складу одиниця продукції буде не бракованою.

7.16.  на склад підприємства надходять деталі із трьох цехів. перший цех відправив 100 деталей, другий і третій – по 200. перший і другий цехи по 2% браку, третій – 1%. знайти ймовірність того, що навмання взята деталь бракована.

7.17.  два верстати виготовляють деталі, які поступають на конвеєр. з першого верстата надійшло 400 деталей, а з другого на 50% більше. перший верстат дає 2% браку, другий – 3%. знайти ймовірність того, що навмання взята деталь з конвеєра бракована.

7.18.  у першому ящику є 20 деталей, з яких 30% пофарбовано, у другому 10 деталей і 4% пофарбовано. знайти ймовірність того, що деталь, взята з навмання вибраного ящика, пофарбована.

7.19.  в урні 4 білі і 4 чорні кульки. два гравці почергово виймають із урни по кульці, не повертаючи їх назад. виграє той гравець, котрий раніше витягне білу кульку. знайти ймовірність того, що: а) виграє перший гравець; б) виграє другий гравець.

7.20.  маємо три урни. у першій міститься 6 білих і 4 чорних кульки, у другій – 8 білих і 2 чорних і в третій – 1 біла і 1 чорна. із першої урни навмання беруть три кульки, а із другої – дві і у третю урну. яка ймовірність після цього вийняти із третьої урни білу кульку?

7.21.  серед  n  екзаменаційних білетів є  п  „щасливих”. студенти підходять за білетами один за одним. у кого більша ймовірність узяти „щасливий” білет: у того, хто підійшов першим, чи у того, хто підійшов другим?

8. формула байєса

якщо випробування проведено і в результаті нього подія а з’явилася, то умовна ймовірність рa(вk) може не дорівнювати р(вk). порівняння цих ймовірностей дозволяє переоцінити ймовірність гіпотези за умови, що подія а з’явилася. для цього використовують формулу байєса:

,  k=1,2,…,n.

розв’язок типових

приклад 8.1.  два автомати виготовляють однакові деталі, які надходять на спільний конвеєр. продуктивність першого автомата вдвічі більша за продуктивність другого. перший автомат випускає в середньому 60% деталей без браку, а другий – 84%. навмання взята з конвеєра деталь виявилась без браку. знайти ймовірність того, що ця деталь виготовлена першим автоматом.

розв’язання.  позначимо через а подію – деталь без браку. можна сформулювати дві гіпотези: в1 – деталь виготовлена першим автоматом (оскільки перший автомат виготовляє вдвічі більше деталей, ніж другий): р(в1)=; в2 – деталь виготовлена другим автоматом, причому р(в2)=. умовна ймовірність того, що деталь буде без браку, якщо вона зроблена першим автоматом, дорівнює  . умовна ймовірність того, що деталь буде без браку, якщо вона зроблена другим автоматом, дорівнює  . ймовірність того, що навмання взята деталь виявиться без браку, за формулою повної ймовірності дорівнює:

4,4(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ