Объяснение:
Для того, чтобы число составленное из цифр 0, 2, 4, 7, 8 было нечетным, то последнее цифра должна быть 7 так как по признаку делимости числа на 2, то число делится на два если его последняя цифра делится на 2, а так как 0, 2, 4, 8 делится на 2, а 7 - не делится, то последняя цифра числа 7.
На оставшиеся места претендуют комбинации из цифр: 0, 2, 4, 8
Нужно выбрать 2 числа из 4 цифр, так как по условие число трехзначное. Число размещений:
Выбрать 1 элемент из трех возможно , так как ноль не может стоять на первом месте. Пусть всего составить различные нечетные трехзначных числа без повторений цифр, тогда .
Обозначим через x число правильно выполненных заданий, а через y - число неверно выполненных. Тогда по условию имеем следующее уравнение: 9x - 5y = 57 с дополнительным условием x+y ≤ 15. Из уравнения видно, что 9x-57 должно быть кратно 5. Поскольку 57 = 3*19, то 9x-57 = 3*3x - 3*19 = 3*(3x-19). Значит 3x-19 должно быть кратно 5. Это возможно при x = 8, в этом случае 3*8-19 = 24-19 = 5. Тогда 9*8-5y = 57. Отсюда 5y = 72-57 = 15 и y = 15/5 = 3. Условие x+y = 8+3 = 11 ≤ 15 соблюдается. Т. о. команда выполнила правильно 8 заданий.
ответ: 8 заданий.
5^x:3^x ≤ 25/9
(5/3)^x ≤ (5/3)^2
x ≤ 2