М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MilkaV
MilkaV
24.05.2022 09:43 •  Алгебра

Выражение: и укажи его значение tgπ\3−tgπ\12 1+tgπ\3⋅tgπ\12 (записанно как дробь)

👇
Ответ:
205ячсмит
205ячсмит
24.05.2022
Это формула тангенса разности
TF(π/3-π/12)=tg(4π/12-π/12)=tg3π/12=tgπ/4=1
4,4(97 оценок)
Открыть все ответы
Ответ:
roma280274
roma280274
24.05.2022

Объяснение:

1) проверим для n=3

2³=8 ; 2*3+1=7 ; 2³>2*3+1 верно (1)

2) предположим что неравенство верно при n=k (k>3) (2)

3) при n=k+1 проверим выполнение неравенства

2^(k+1)=2*2^k

2(k+1)+1=2k+3

по предположению (2)  2^k>2k+1

умножим обе части на 2

2*2^k>2(2k+1)=4k+2

2*2^k>4k+2

сравним 4k+2 и 2k+3  для этого определим знак их разности

4k+2 - (2k+3)=4k+2-2k-3=2k-3 так как k>3 то 2k>2*3=6

2k>6 и тем более 2k>3 ⇒ 2k-3>0 ⇒ 4k+2 - (2k+3)>0 ⇒ 4k+2 > (2k+3)  

так как 2^(k+1)>4+2k  и 4+2k>2k+3 и 2k+3=2(k+1)+1

то   2^(k+1)> 2(k+1)+1  то есть неравенство выполняется для n=k+1    (3)

из (1); (2); (3) ⇒ неравенство верно для любого n>3

4,6(13 оценок)
Ответ:
guzhowa66
guzhowa66
24.05.2022

-90

Объяснение:

Согласно условию задачи, дана арифметическая прогрессия аn, в которой а1 = -7.2, а2 = -6.9. Используя определение арифметической прогрессии, находим разность d данной прогрессии: d = а2 - а1 = -6.9 - (-7.2) = -6.9 + 7.2 = 0.3. Используя формулу n-го члена арифметической прогрессии аn = a1 + (n - 1) * d, найдем последний отрицательный член данной прогрессии. Для этого решим в целых числах неравенство: -7.2 + (n - 1) * 0.3 < 0; -7.2 + 0.3 * n - 0.3 < 0; -7.5 + 0.3 * n < 0; 0.3 * n < 7.5; n < 7.5 / 0.3; n < 25. Следовательно, 24-й член а24 является последним отрицательным членом данной прогрессии. Используя формулу суммы первых n членов арифметической прогрессии Sn = (2 * a1 + d * (n - 1)) * n / 2 при n = 24, найдем сумму первых 24 членов данной арифметической прогрессии: S24 = (2 * ( -7.2) + 0.3 * (24 - 1)) * 24 / 2 = (-14.4 + 6.9) * 12 = -7.5 * 12 = -90. ответ: сумма всех отрицательных членов данной арифметической прогрессии равна -90.

4,7(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ