Для того чтобы решить эту задачу, нужно определить, за какое время девочки вымоют окна, работая вместе:
1) Обозначим производительность труда Маши за х, Лены – за у, а Насти – за с, а всю работу возьмем за 1.
2) Тогда время на выполнение всей работы Маши и Насти: х + с = 1/20.
3) Производительность труда Насти и Лены: у + с = 1/15.
4) Производительность труда Лены и Маши: х + у = 1/12.
5) Теперь сложим данные уравнения и найдем общую производительность труда: 2х + 2у + 2с = 1/5; 2 * (х + у + с) = 1/5; х + у + с = 1/10.
6) Тогда вместе девочки выполнят всю роботу за 10 минут.
Поэтому наш ответ: 10 минут.
условие безобразно оформлено, пришлось как-то догадываться, что имелось ввиду, так что, если я решил не те примеры, что вы ждали - ваша вина, надо понятно оформлять.
Это устные упражнения на тему (a^3 + b^3)/(a^2 - a*b + b^2) = (a + b); (ну, конечно, и сумма и разность кубов сюда укладываются, для отрицательных чисел целые степени определены.)
в случае А) a = 1/2000 b = - 1/1999 (ну, в смысле число в минус первой степени);
ответ 1/2000 - 1/1999 = - 1/(1999*2000) = - 1/3998000;
Б) a = 1/1222 b = 1/777,
ответ 1/1222 + 1/777 = 1999/949494; может это и можно сократить, но ...
х^5=-1215:5
х^5=-243
х=-3
ответ: -3