Решение: x <= -1 - это луч, а не отрезок. Но, даже если в задании ошибка, и должно быть:
Все равно решение: -1 <= x <= 4 - это отрезок, но длиной не 1, а 5. ответ: неверно. 4) Прямые x + y = 1 и x - y = -1 перпендикулярны - да. 5) Уравнение x^2 - x = y^2 + y задает пару прямых. Переносим все направо 0 = y^2 - x^2 + x + y (y - x)(y + x) + (y + x) = 0 (y + x)(y - x + 1) = 0 Это уравнение действительно задает 2 прямых: y + x = 0 и y - x + 1 = 0
1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Приводим подобные
Решение: x <= -1 - это луч, а не отрезок.
Но, даже если в задании ошибка, и должно быть:
Все равно решение: -1 <= x <= 4 - это отрезок, но длиной не 1, а 5.
ответ: неверно.
4) Прямые x + y = 1 и x - y = -1 перпендикулярны - да.
5) Уравнение x^2 - x = y^2 + y задает пару прямых.
Переносим все направо
0 = y^2 - x^2 + x + y
(y - x)(y + x) + (y + x) = 0
(y + x)(y - x + 1) = 0
Это уравнение действительно задает 2 прямых:
y + x = 0 и y - x + 1 = 0