Найдите все k, при которых прямая y=kx+1 имела бы ровно две общих точки с параболой y=kx2−(k−3)x+k и при этом не пересекала бы параболу y=(2k−1)x2−2kx+k+9/4 варианты ответов : (−∞; 9/8) (1; +∞) (3; +∞) (1; 5) (1; 9/8)
Х в четвертой степени=(х-2)в квадрате Если а² = b², то обязательно a = плюс-минус b (прости, я не нашла значка плюс-минус). Т.е. мы можем утверждать, что x² = x - 2 или x² = 2 - x. Решим оба уравнения. x² = x - 2 x² - x + 2 = 0 D = (-1)² - 4·1·2 = 1 - 8 = -7. Так как дискриминант отрицательный, действительных решений уравнение не имеет. Теперь решаем второе уравнение: x² = 2 - x x² + x - 2 = 0 D = 1² - 4·1·(-2) = 1 + 8 = 9. Дискриминант положительный, т.е. уравнение имеет два корня: x = (-1 плюс-минус √D) / 2·1 = 1/2 · (-1 плюс-минус 3) = 1/2 · (-1 + 3) = 1/2 · 2 = 1 = 1/2 · (-1 - 3) = 1/2 · (-4) = -2
F (x) = - x² -2x +8 ; * * * * * f(x) = 9 - (x+1)² * * * * * =(3² - (x+1)² =(3 -x -1)(3+x+1) = - (x+4)(x -2) * * * * * 1. ООФ : ( - ∞ ; ∞) . 2. Функция не четной и не нечетной * * * * * и не периодической * * * * * . 3 Точки пересечения функции с координатными осями : а) с осью y : x =0⇒ y = 8 ; A(0 ;8) * * * * * -0² -2*0 +8 =8 * * * * * б) с осью x : y =0 ⇒ - x² -2x +8 =0 ⇔ x² +2x -8 =0 ⇒x₁= -1 - 3 = - 4 ; x₂ = -1 +3 =2 . B(-4; 0) и C(2;0). * * * * * D/4 = (2/2)² -(-8) = 9 =3² * * * * * 4. Критические точки функции. * * * * * значения аргумента (x) при которых производная =0 или не существует) * * * * * f ' (x) = ( - x² -2x +8 )' = - (x²)' - (2x )' +(8 )' = -2* x - 2(x )' + 0 = -2x - 2 = -2(x+1); f ' (x) = 0 ⇒ x = -1 (одна критическая точка) . 5. Промежутки монотонности : а) возрастания : f ' (x) > 0 ⇔ -2(x+1) > 0 ⇔ 2(x+1) < 0 ⇔ x < -1 иначе x∈( -∞; -1). б) убывания : f ' (x) < 0 ⇔ -2(x+1) < 0 ⇔ 2(x+1) > 0 иначе x∈ ( 1 ;∞ ). 6. Точки экстремума: * * * * * производная меняет знак * * * * * x = - 1. 7. Максимальное и минимальное значение функции : Единственная точка экстремума x = - 1 является точкой максимума , т.к. производная меняет знак с минуса на плюс . max(y) = - (-1)² -2(-1) +8 = 9. 8. промежутки выгнутости и выпуклости кривой; найти точки перегиба. * * * * * f ' ' (x) =0 * * * * * f ' ' (x) =( f'(x))' =( -2x -2) ' = -2 < 0 ⇒ выпуклая в ООФ здесь R by (-∞; ∞) не имеет точки перегиба (точки при которых f ' ' (x) = 0 ) .
P.S. y = -x² -2x +8 = 9 -(x+1)² . График этой функции парабола вершина в точке M(- 1; 9) , ветви направлены вниз , что указано во второй строке решения . Эту функцию предлагали наверно для "тренировки".
5
y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня D>0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0
8k<9
k<9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней D<0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0
1<k<5
пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8
ответ 1<k<9/8