1. Сначала требовалось 12 автомашин
2. Фактически использовали 15 автомашин
3. На каждой автомашине планировалось перевозить 5 тонн
Объяснение:
пусть
x - изначальная грузоподъемность одной машины
(т.е. то, сколько тонн груза планировались перевозить на каждой машине изначально)
(x-1) - фактическая грузоподъемность одной машины
(т.е. то, сколько тонн груза фактически перевозили на каждой машине)
y - количество машин, которое требовалось изначально
(y+3) - количество машин, которое потребовалось фактически
по условию: надо перевести 60 тонн,
грузоподъемность × количество машин = масса перевозимого груза
составим систему:
x × y = 60 - изначально
(x-1)×(y+3) = 60 - фактически
решаем систему:
из первого уравнения: x = 60/y
(по условию: y не может быть равен 0)
подставим во второе уравнение:
(60/y - 1) × (y+3) = 60
60 + 180/y - y - 3 = 60
180/y - y - 3 =0
-y^2 -3 × y + 180 = 0
y^2 + 3 × y - 180 = 0
решаем квадратное уравнение:
корни: 12, -15
-15 - отрицательная величина, не подходит по условию
значит
y = 12
тогда
x = 60/12 = 5
чтобы наибольшее значение данной функции было не меньше 1, необходимо и достаточно, чтобы она в какой-то точке приняла значение 1.
если наибольшее значение функции не меньше единицы, то по непрерывности в какой-то точке будет значение единица. если же наибольшее значение меньше единицы, то значение единица приниматься не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1
так как x² + 1 > 0 , то уравнение равносильно совокупности :
эта совокупность имеет решение, если:
2) 27+a³=(3+a)(9-3a+a²).
3) 216-y³=(6-y)(36+6y+y²).
4) a⁶-8= (a²-2)(a⁴+2a²+4).
5) a³b³-c³=(ab-c)(a²b²+abc+c²).