По виду графика. Например :
1) Прямая линия соответствует линейной функции y = kx + b.
k>0 ⇒ прямая наклонена вправо - функция возрастающая.
k<0 ⇒ прямая наклонена влево - функция убывающая.
k=0 ⇒ прямая параллельна оси ОХ.
b>0 ⇒ прямая пересекает ось OY выше оси OX.
b<0 ⇒ прямая пересекает ось OY ниже оси OX.
b=0 ⇒ прямая проходит через точку начала координат.
2) Парабола соответствует квадратичной функции y = ax² + bx + c
a>0 ⇒ ветви параболы направлены вверх.
a<0 ⇒ ветви параболы направлены вниз.
c>0 ⇒ парабола пересекает ось OY выше оси OX.
c<0 ⇒ парабола пересекает ось OY ниже оси OX.
c=0 ⇒ параболы проходит через точку начала координат.
3) Гипербола соответствует функции и состоит из двух частей.
4) Половинка лежащей параболы соответствует функции y =√x
Для установления соответствия можно проанализировать, в каких точках графики пересекают оси координат.
tg^2 x+8tg x+12=0
Заменим tg x=t, получим
t^2+8t+12=0
Д=64-4*12=16
t1=(-8+√16)/2=(-8+4)/2=-2
t2=(-8-√16)/2=(-8-4)/2=-6
Произведем обратную замену tg x=t
tg x=-2
x=arctg(-2)+πn, n∈Z
tg x=-6
x=arctg(-6)+πn, n∈Z