Пример:Какое число из промежутка (2;3) не входит в область определения функции y=tg(пиХ)? 1.область определения = ОДЗ(область допустимых значений) = D(y) - значения аргумента Х, при которых функция существует, то есть такие Х, при которых можно сосчитать У, 2.tg(ПХ)=sin(ПХ)/cos(ПХ), тангенс пиХ нельзя сосчитать когда косинус пиХ равен нулю, так как на нолю делить нельзя. cos(пиХ)=0 , пиХ=пи/2 +пиN, N принадлежит Z( множество целых чисел), 3.теперь выделим Х: разделим всё уравнение на пи Х=0.5+N, N принадлежит Z 4.теперь осталось подставлять числа и находить Х из промежутка (2;3): N=2, x=2,5, 2,5 входит в данный промежуток N=1, Х=1,5 , 1,5 не входит N=3, Х=3,5, 3,5 не входит 5. таким образом Х=2,5 не входит в область определения данной функции 6. проверка(если сомневаешься): tg(2,5пи)=sin(2,5пи)/cos(2,5пи)=sin(2пи+0,5пи)/cos(2пи+0,5пи) , 2пи-полный оборот, его можно убрать sin(0,5пи)/cos(0,5пи)=sin(90)/cos(90)=1/0, на ноль делить нельзя, => 2,5 не входит в область определения => мы решили правильно
Принцип решения №2: Пусть нужно заказать Х труб по 5м и У труб по 6м, тогда, согласно условию, х+у=30 труб (первое уравнение). Следовательно из труб по 5м мы проложим 5Хм водопровода, а из труб по 6м - 6Ум, что по условию составляет 426м. Составим и решим систему уравнений: (1) х+у=30 (2) 5х+6у=426
Ну а дольше просто решаем систему и получаем ответ. Если не хотите использовать 2 переменных, то сразу выражайте кол-во одних труб, через ко-во других, т.е. если по 5м - Хтруб, то по 6м - (30-х)труб.
2sin(x+y)/2 cos(x-y)/2=-√2; поскольку x+y=π/2, sin(x+y)/2=sin π/4=√2/2; получаем cos(x-y)/2= - 1; (x-y)/2=π+2πn; x-y=2π+4πn; решая систему из последнего уравнения и x+y=π/2, получаем x= 5π/4+2πn; y= - 3π/4-2πn; n∈Z