Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки. Решаем две системы решение системы предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0; 5x-9>1; х²-4х+5≤1; х²-4х+5>0. Решение каждого неравенства системы: х≤20/11 х>1,8 х=2 х- любое О т в е т. 1а) система не имеет решений. б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0 0<5x-9<1 х²-4х+5≥1 х²-4х+5>0 Решение х≤20/11 0<х<1,8 х-любое (так как х²-4х+4≥0 при любом х) х- любое Решение системы 1б) 0<x<1,8, так как (20/11) >1,8 О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 5x-9>1 х²-4х+5≥1 х²-4х+5>0 Решение х≥20/11 х>1,8 х-любое х- любое О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 0<5x-9<1 х²-4х+5≤1 х²-4х+5>0 Решение х≥20/11 0<х<1,8 х=2 х- любое Решение системы 2б) нет решений О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11 или х∈(0;1,8)U(1целая 9/11;+∞)
Вниз по реке-это значит, что течение плыть катеру, т.е. полная скорость катера за в это путешествие составляло х+21 км/ч, где х-скорость течения реки. Получается обратно скорость катера была меньше, т.к. течение уже мешало плыть катеру, т.е. обратно скорость катера составляла: 21-х км/ч. Пусть у - это время всего путешествия катера - туда и обратно. Составим уравнение относительно скорости реки "х" и решим его: Путешествие катера из города А в город В: (х+21)m=72 (x-21)n=72 m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда: m=y-n
(х+21)(y-n)=72 (x-21)n=72
Время пути канистры: х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72 (x-21)n=72 х*у=21
x*y-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 n(x-21)=72 х*у=21
21-21n+72-21n+21y=72 n(21/y - 21)=72
-42n+21y=-21 :21 n=72/(21/y - 21)
-2n+y=-1 n=72/(21/y - 21)
y=2n-1 n*(21/(2n-1) - 21)=72 n*(21-42n+21)=72(2n-1) -42n²+42n-144n+72=0 -42n²-102n+72=0 -21n²-51n+36=2601+12096=5625 √5625=75 n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной) n2=(51-75)/-42=24/42=12/21
(4(a+b)+3(x+y))(4(a+b)-3(x+y))