Пусть катеты a и bа/b=3/4a=3b/4пусть меньший отрезок, на которые делит высота гипотенузу равен x тогда второая x+14по теореме высота h^2=x(x+14)по теореме пифагора a^2=x^2+h^2=x^2+x(x+14)=2x^2+14xснова по теореме пифагора: b^2=h^2+(x+14)^2=x(x+14)+(x+14)^2=x^2+14x+x^2+28x+196=2x^2+42x+196но так как мы сказали что a=3b/4 => a^2=9b^2/16=9(2x^2+42x+196)/169(2x^2+42x+196)/16=2x^2+14x9(2x^2+42x+196)=32x^2+224x18x^2+378x+1764=32x^2+224x-14x^2+154x+1764=014x^2-154x-1764=0x^2-11x-126=0x=18 осталось найти a и b и найти площадь
Графіком квадратичної функції є парабола, що має вершину у початку координат і проходить через точку А(2;-8). Задайте цю функцію формулою.
Графиком квадратичной функции является парабола, что вершину в начале координат и проходит через точку А (2; -8). Задайте эту функцию формулой
Решение: Уравнение параболы задается уравнением y =ax²+bx+с или х = ay²+by+с(данное уравнение можете не рассматривать) где а≠0 Так как вершина параболы находится в начале координат то b=c=0 Уравнение параболы можно записать как: y =ax² или х = ay²(данное уравнение можете не рассматривать) Найдем постоянную величину а из уравнений подставив координаты точки А(2;-8) а = у/х² = -8/2² =-8/4=-2 y = -2x² a = x/y² =2/(-8)² =2/64 =1/32 x = y²/32 (данное уравнение можете не рассматривать) Рішення : Рівняння параболи задається рівнянням y = ax ² + bx + з або х = ay ² + by + з де а ≠ 0 Так як вершина параболи знаходиться на початку координат то b = c = 0 рівняння можна записати як y = ax ² або х = ay ² Знайдемо постійну величину а з рівнянь підставивши координати точки А (2; -8) а = у / х ² = -8 / 2 ² = -8/4 = -2 y =-2x ² a = x / y ² = 2 / (-8) ² = 2/64 = 1/32 x = y ² / 32
сумма корней равна -1 x1+x2=-1 4+x2=-1 x2= -5