М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
аноним991
аноним991
18.09.2021 22:59 •  Алгебра

Длина прямоугольника на 1 м больше его ширины,а диагональ прямоугольника равна 29 м.найдите площадь прямоуголька.

👇
Ответ:
shuius
shuius
18.09.2021
Ширину выразим как "х", а длину как "х+1"
По т. Пифагора:
х^2+(x+1)^2=29^2
x^2+x^2+1+2x=841
2x^2+2x+1=841
2x^2+2x-840=0
x^2+x-420=0
D=1-4×1×(-420)=1+1680=1681=41^2
x=-1±√1681/2=-1±41/2
x1=-42/2=-21
x2=40/2=20
ответ не может быть отрицательным:
Ширина=20м
Длина=20+1=21м

S=ab=20×21=420м^2
ответ:420 м^2
4,4(27 оценок)
Открыть все ответы
Ответ:
konuj
konuj
18.09.2021
Решим первый вариант.  

x²- 8x + 67 < 0

y(x) = x² - 8x + 67 -  это  квадратичная  функция; у  которой ветви направлены вверх, так как коэффициент перед  х²  равен  1,  то есть он больше нуля.

Сначала  решим квадратное уравнение:
x²- 8x + 67 = 0

Д = 64 - 4·67 = - 204 < 0    корней нет

Если  Дискриминант меньше нуля, то данная  парабола  вся полностью лежит выше оси ОХ,  и она не будет пересекать эту ось ОХ . 

Поэтому, все значения  функции будут только положительными.

Следовательно, x²- 8x + 67 < 0     не имеет решений.
4,8(95 оценок)
Ответ:
Sauleorazbaeva1
Sauleorazbaeva1
18.09.2021
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
4,4(67 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ