X²+1/x²=(x+1/x)²-2 x+1/x=a 7a-2a²+4-9=0 2a²-7a+5=0 D=49-40=9 a1=(7-3)/4=1⇒x+1/x=1 x²-x+1=0,x≠0 D=1-4=-3<0 нет решения a2=(7+3)/4=2,5 x+1/x=2,5 x²-2,5x+1=0,x≠0 x1+x2=2,5 U x1*x2=1 x1=0,5 U x2=2
Пусть треугольник АВС. Высота ВК медиана ВМ. Т.к. углы АВК=углу КВМ , то ВК не только высота , но и биссектриса . Значит треугольник АВМ равнобедренный АВ=ВМ КВ будет и медианой , значит АК=КМ. Но по условию ВМ медиана, значит АМ=МС . Тогда МС=2 КМ. Рассмотрим треугольник КВС. В нём ВМ биссектриса по условию, т.к. по условию три угла равны АВК=КВМ=МВС. Биссектриса внутреннего угла делит противоположну сторону на отрезки, пропорциональные прилежащим сторонам ВК:ВС=КМ:МС= 1:2. Тогда ВС в 2 раза больше ВК. А в прямоугольном треугольнике с острым углом в 30 градусов гипотенуза в 2 раза больше катета, противолежащего этому углу. Тогда угол ВСА=30 градусов. Угол КВС =60 гр. Тогда угол АВС состоит из трёх равных углов и каждый по 30 гр. Угол АВС=90гр. Угол ВАС=60 гр.
Пусть треугольник АВС. Высота ВК медиана ВМ. Т.к. углы АВК=углу КВМ , то ВК не только высота , но и биссектриса . Значит треугольник АВМ равнобедренный АВ=ВМ КВ будет и медианой , значит АК=КМ. Но по условию ВМ медиана, значит АМ=МС . Тогда МС=2 КМ. Рассмотрим треугольник КВС. В нём ВМ биссектриса по условию, т.к. по условию три угла равны АВК=КВМ=МВС. Биссектриса внутреннего угла делит противоположну сторону на отрезки, пропорциональные прилежащим сторонам ВК:ВС=КМ:МС= 1:2. Тогда ВС в 2 раза больше ВК. А в прямоугольном треугольнике с острым углом в 30 градусов гипотенуза в 2 раза больше катета, противолежащего этому углу. Тогда угол ВСА=30 градусов. Угол КВС =60 гр. Тогда угол АВС состоит из трёх равных углов и каждый по 30 гр. Угол АВС=90гр. Угол ВАС=60 гр.
x+1/x=a
7a-2a²+4-9=0
2a²-7a+5=0
D=49-40=9
a1=(7-3)/4=1⇒x+1/x=1
x²-x+1=0,x≠0
D=1-4=-3<0 нет решения
a2=(7+3)/4=2,5
x+1/x=2,5
x²-2,5x+1=0,x≠0
x1+x2=2,5 U x1*x2=1
x1=0,5 U x2=2