1)а_n=3n-15
2)a_n+1=a_n+n+1
3)a_n=200n-185
Объяснение:
1.
Последовательность являет
ся арифметической прогрес
сией:
а_n=а_1+d(n-1)
По условию а_1=-12
d=a_2-a_1=(-9)-(-12)=
=-9+12=3
Подставляем а_1 и d
вформулу для а_n :
a_n=-12+3(n-1)=
=-12+3n-3=
=3n-15
Рекурентная формула
a_n=-13+3n-3
2.
Закономерность:
Каждый член последователь
ности получен прибавлением
к предыдущему номера после
дующего члена:
a_n+1=a_n+(n+1)=a_n+n+1
3.
Последовательность являет
ся арифметической прогрес
сией:
а_1=15
d=a_2-a_1=215-15=200
a_n=a_1+d(n-1)
a_n=15+200(n-1)=
=15+200n-200=200n-185
Рекурентная формула
a_n=200n-185.
cos2x = -2
Нет корней, т.к. косинус аргумента принадлежит отрезку [-1; 1].
sin4x = 0
4x = πn, n ∈ Z
x = πn/4, n ∈ Z.
2sin(x/2) + 1 = 0
sin(x/2) = -1/2
x/2 = (-1)ⁿ+¹π/6 + πn, n ∈ Z
x = (-1)ⁿ+¹π/3 + πn, n ∈ Z.
2cos2x - 1 = 0
cos2x = 1/2
2x = ±π/3 + 2πn, n ∈ Z.
x = ±π/6 + πn, n ∈ Z
2tg²x - tgx = 0
tgx(2tgx - 1) = 0
tgx = 0
x = πn, n ∈ Z.
2tgx - 1 = 0
tgx = 1/2
x = arctg(1/2) + πn, n ∈ Z.