Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b
Пусть х-скорость течения реки, то
(18+х)км/ч - скорость теплохода по течению
(18-х)км/ч - скорость теплохода против течения
Составим уравнение
50 8
+ = 3 ч
18+x 18-x
50(18-х)+8(18+х) = 3(18-х)(18+х)
900-50х+144+8х-972+3x^2=0
3x^2 - 42x+72=0
D=1764-864=900>0
x1=12 км/ч
х2=2км/ч
По логике скорость течения реки не может быть 12 км/ч, зн. скорость будет 2 км/ч