А) Время движения скорого поезда: x - 1/3 (ч) б) Путь, пройденный товарным поездом до встречи со скорым: S₁ = v₁x = 66x (км) в) Путь, пройденный скорым поездом до встречи с товарным: S₂ = v₂(x - 1/3) = 90(x - 1/3) = 90x - 30 Так как расстояние S = АВ = 256 км, то: S = S₁+S₂ 256 = 66x + 90x - 30 156x = 286 x = 1 5/6 (ч) Таким образом, товарный поезд находился в пути до встречи со скорым 1 час 50 мин и за это время: S₁ = v₁x = 66 * 1 5/6 = 121 (км) Скорый поезд находился в пути до встречи с товарным 1 час 30 мин и за это время S₂ = v₂(x - 1/3) = 90 * 1 5/6 - 30 = 165 - 30 = 135 (км)
ответ: поезда встретятся на расстоянии 121 км от станции А и 135 км от станции В.
1) Пусть c=a+b. Наименьшее значение c равно 14,7+5=19,7, а наибольшее - 15,5+7=22,5. Значит, число с заключено между целыми числами 19 и 23. 2) Пусть c=a*b. Наименьшее значение c равно 14,7*5=73,5, а наибольшее - 15,5*7=108,5. Значит, число с заключено между целыми числами 73 и 109. 3) Пусть c=a-b. Наименьшее значение c равно 14,7-7=7,7, а наибольшее - 15,5-5=10,5. Значит, число с заключено между целыми числами 7 и 11. 4) Пусть c=a/b. Наименьшее значение c равно 14,7/7=2,1, а наибольшее - 15,5/5=3,1. Значит, число с заключено между целыми числами 2 и 4.