Примем всю работу за 1. Пусть вторая бригада выполнить работу за х часов, тогда первой потребуется х+5 часов. Первая бригада выполняет: раб./час. Вторая бригада выполняет: раб./час. Вместе две бригады выполняют: раб./час. Составим и решим уравнение: + = (умножим на 6х(х+5), чтобы избавиться от дробей) + = 6х+6*(х+5)=х(х+5) 6х+6х+30=х²+5х 12х+30-х²-5х=0 х²-7х-30=0 D=b²-4ac=(-7)²-4*1*(-30)=49+120=169 (√169=13) x₁= x₂= - не подходит, поскольку х<0 Значит, вторая бригада выполнит работу за 10 часов, а первая за х+5=10+5=15 часов. ОТВЕТ: первая бригада выполнит работу за 15 часов; вторая - за 10 часов.
D=(-11)²-20*6=121-120=1
y1=(11+1)/20=12/20=0.6
y2=(11-1)/20=10/20=0.5
Ж)3y²+13y+14=0
D=13²-4*3*13=1
y1=(-13+1)/6=-12/6=-2
y2=(-13-1)/6=-14/6=-7/3=-2 целых и 1/3