А) 3n^2 + n - 4 = n(3n+1) - 4
Если n четное, то n(3n+1) тоже четное, и n(3n+1) - 4 четное.
Если n нечетное, то 3n+1 четное, тогда n(3n+1) - 4 опять четное.
При любом n это выражение делится на 2, то есть оно четное.
Б) 2n^3 + 7n + 3 = 2n^3 + 4n + 3n + 3 = 2n(n^2+2) + 3(n+1)
Второе выражение делится на 3 при любом n.
Разберем первое выражение.
Само число n при деление на 3 может давать остаток 0, 1 или 2.
1) Остаток равен 0, то есть n делится на 3.
Тогда и все выражение делится на 3.
2) Остаток равен 1, запишем так: n = 3k + 1.
Тогда n^2 + 2 = (3k+1)^2 + 2 = 9k^2 +. 6k + 1 + 2 = 9k^2 + 6k + 3.
Оно делится на 3.
3) Остаток равен 2, тогда n = 3k + 2.
n^2 + 2 = (3k+2)^2 + 2 = 9k^2 + 12k + 4 + 2 = 9k^2 + 12k + 6
Оно тоже делится на 3.
Таким образом, при любом n выражение 2n(n^2 + 2) делится на 3.
Значит, и всё выражение 2n^3 + 7n + 3 делится на 3.
Объяснение:
Для простого решения систем уравнений используют сложения уравнений.
1)
10х+2у=12 (1)
-5х+4у=- 6. (2).
Умножим второе уравнение на два ,получим:
-10х+8у=-12.
Вот теперь удобно сложить эти два уравнения.
10х+2у=12
-10х+8у=- 12.
10у=0.
у=0. ; х=(12-2*0)/10=12/10=1,2. это находим из первого уравнения.
Надеюсь, ты понял(а), как решаются такие системы уравнений методом сложения или вычитания.
Остальное попробуй сама решить. Не получится , напиши.
3х-2у=1
12х+7у=-26.
Умножим (1) на (-4).
-12х+8у=-4
12х+7у=-26.
сложим.
15у=-30.
у=-2.
х={1+2(-2)}/3=(1-4)/3=-1.