Будем рассуждать так: раз нужно чётное число, то последняя (третья) цифра- это 0, 2, или 4 то есть для третьей цифры есть эти три варианта раз нужно трёхзначное, то первая цифра не может быть равна нулю значит, ноль может быть использован только в третьей или второй цифре 1) если третья цифра- ноль, то для второй остаётся четыре варианта: 1, 2, 3, 4, а для первой- три варианта (исключая цифру, поставленную второй) 2) если третья цифра- 2, то для второй остаётся четыре варианта: 0, 1, 3, 4 а для первой- три варианта (если вторая цифра- это ноль) и два варианта (если вторая цифра не ноль, а 1, 3 или 4) 3) если третья цифра- 4, то получится то же, что и в варианте 2)
считаем количество комбинаций: для 1) это: 1 * 4 * 3 = 12 разных чисел а для двух вариантов 2) и 3) вместе это: 1*(1*3 + 3*2) * 2 варианта = 18 разных чисел Итого, можно составить: 12 + 18 = 30 разных трёхзначных чисел
Можно начать считать варианты наоборот, начиная с первой цифры трёхзначного числа: итак нам даны 3 чётных и 2 нечётных цифры: 0, 2, 4 и 1, 3 из них, для первой цифры можно использовать 2 чётных и 2 нечётных (т.к. ноль исключаем), а для третьей цифры можно использовать только чётные. 1) если ставим 1ую цифру чётную, то для 2ой цифры остаются 2 чётных и 2 нечётных 1а) если ставим 2ую цифру чётную, то для 3ей остаётся только 1 чётная цифра 1б) если ставим 2ую цифру нечётную, то для 3ей остаются 2 чётных варианта цифр 2) если ставим 1ую цифру нечётную, то для 2ой цифры остаются 3 чётных и 1 нечётная 2а) если ставим 2ую цифру чётную, то для 3ей остаются 2 чётных варианта цифр 2б) если ставим 2ую цифру нечётную, то для 3ей остаются 3 чётных варианта цифр
Считаем варианты, начиная с первой цифры: 2 чётных варианта первой цифры, каждый даёт по 2 чётных и 2 нечётных варианта второй цифры, из которых первые два- каждый даёт по 1 варианту 3ей цифры, а вторые два- каждый даёт по 2 варианта для 3ей цифры. То есть получаем: 2 * ( 2*2 + 2*1 ) = 12 вариантов, если первая цифра- чётная.
Так же считаем для нечётной первой цифры: 2 нечётных варианта первой цифры, каждый даёт по 3 чётных и 1 нечётному варианту второй цифры, из которых первые три- каждый даёт по 2 варианта для 3ей цифры, а оставшийся один- даёт 3 варианта для 3ей цифры. То есть получаем: 2 * ( 3*2 + 1*3 ) = 18 вариантов, если первая цифра- чётная.
Итого, можно составить: 12 + 18 = 30 разных трёхзначных чисел
Пусть х-это скорость течения реки.Тогда скорость по течению реки будет (18+х),а против течения реки будет (18-х). Составим уравнение 50 км/(18+х) + 8км/(18-х) = 3 часа 50·(18-х) + 8·(18+х) - 3·(18+х)·(18-х) =0 (только х≠18 , чтобы знаменатель не был равен нулю) 900 -50х + 144 + 8х - ( 54+3х)·(18-х)=0 1044 -42х - (972-54х+54х-3х²)=0 1044 - 42х -972 +54х -54х +3х²=0 3х²-42х+72=0 разделим всё на 3,каждый член, для облегчения решения х²- 14х+ 24 =0 Д=196-4·1·24=100 х= 12 и х=2 Скорость реки не может быть почти равной скорости теплохода, поэтому х=12 мы не принимаем за ответ. ответ: х=2км/ч
Б= -43
ответ б равно -43