Даны координаты параллелограмма: А(1; -2; 3), В(3; 2; 1), D(6; 4; 4).
1) Так как сторона DС параллельна и равна АВ, то приращения координат по осям "x", "у" и "z" у них равны.
АВ: Δx = 3-1 = 2, Δу = 2-(-2) = 4, Δz = 1-3 = -2.
Отсюда х(С) = x(D) + Δx = 6+2 = 8,
у(С) = у(D) + Δу = 4 + 4 = 8.
z(C) = z(D) + Δz = 4 - 2 = 2.
ответ: С(8; 8; 2).
2) АВ = (2; 4; -2).
|AB| = √(4 + 16 + 4) = √24 = 2√6.
AD = (6-1; 4-(-2); 4-3) = (5; 6; 1).
|AD| = √(25 + 36 + 1) = √62.
3) cos A = (2*5 + 4*6 + (-2)*1)/(2√6*√62) = 32/(4√93) = 8√93/93 = 0,829561356.
4) S(ABCD) = AB*AD*sin A = 2√6*√62*0,558415577 = 21,54065922.
ответ: 10^6
Объяснение:
Пусть первая цифра слева семизначного числа отлична от 0 и равна a и существует еще хотя бы одна цифра отличная от 0 ( как минимум она равна 1), тогда независимо от значений остальных цифр числитель всегда будет менее чем (a+1)*10^6, а знаменатель всегда не менее чем (a+1), ибо хотя бы еще одна цифра ненулевая, таким образом, выполняется такое неравенство:
S/S(k) < (a+1)*10^6/(a+1) = 10^6.
Поскольку a>0, то a+1 >0, а значит деления на 0 не возникает.
Рассмотрим оставшийся вариант: все цифры помимо первой равны 0, а первая цифра равна a и также отлична от нуля, тогда:
S/S(k) = a*10^6/a = 10^6
Поскольку a>0, деления на 0 не возникает.
Таким образом, наибольшее значение:
S/S(k) = 10^6.