5x³ - 3x² - 3x + 5 = 0
5x³ +5 - 3x² - 3x = 5(x³ + 1) - 3x(x + 1) = 5(x + 1)(x² - x + 1) -3x(x + 1) = (x + 1)(5x² -5x + 5 - 3x) = (x + 1)(5x² - 8x + 5) = 0
x = -1
5x² - 8x + 5 = 0
D = 64 - 80 < 0
x ∈ ∅ при x ∈ R
ответ -1
(x + 1/x)² - 5(x + 1/x) + 6 = 0
x ≠ 0
x + 1/x = t
t² - 5t + 6 = 0
D = 25 - 24 = 1
t12 = (5 +- 1)/2 = 2 3
1. t = 2
x + 1/x = 2
(x² - 2x + 1)/x = 0
(x - 1)²/ x = 0
x = 1
2. t = 3
x + 1/x = 3
(x² - 3x + 1)/x = 0
D = 9 - 4 = 5
x12 = (3 +- √5)/2
ответ (3 +- √5)/2, 1
x⁴ - 5x³ + 8x² - 5x + 1 = 0
x ≠ 0
разделим на x²
1/x² + x² = 1/x² + 2*x²*1/x² + x² - 2*x²*1/x² = (x + 1/x)² - 2
x² - 5x + 8 - 5/x + 1/x² = x² + 1/x² - 5(x + 1/x) + 8 = (x + 1/x)² - 2 - 5(x + 1/x) + 8 = (x + 1/x)² - 5(x + 1/x) + 6 = 0
x + 1/x = t
t² - 5t + 6 = 0
это уравнение было номер 2
D = 25 - 24 = 1
t12 = (5 +- 1)/2 = 2 3
1. t = 2
x + 1/x = 2
(x² - 2x + 1)/x = 0
(x - 1)²/ x = 0
x = 1
2. t = 3
x + 1/x = 3
(x² - 3x + 1)/x = 0
D = 9 - 4 = 5
x12 = (3 +- √5)/2
ответ (3 +- √5)/2, 1
x² + 4x + 4 = 4x + 16
x² + 4x - 4x = 16 - 4
x² = 12
x = √12
x = - √12
2) 4( x - 1)² = ( x+ 2)²
4( x² - 2x + 1) = x² + 4x + 4
4x² - 8x + 4 - x² - 4x - 4 = 0
3x² - 12x = 0
3x( x - 4) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
3x = 0
x = 0
x - 4 = 0
x = 4
3) ( 3x - 1)² = 3( 1 - 2x)
9x² - 6x + 1 = 3 - 6x
9x² - 6x + 6x = 3 - 1
9x² = 2
9x² - 2 = 0
D = b² - 4ac = 0 - 4×9×(-2) = 72
x1 = ( 0 + √72) / 18 = √9×8 / 18 = 3√8 / 18 = √8 / 6 = 2√2 / 6 = √2 / 3
x2 = - √2 / 3
ответ: +/ - √2 / 3.
4) ( x + 3)² = 3( x + 1)
x² + 6x + 9 = 3x + 3
x² + 6x - 3x + 9 - 3 = 0
x² + 3x + 6 = 0
D= b² - 4ac = 9 - 4×6 = 9 - 24 = - 15 - дискриминант отрицательный,значит,корней нет.
ответ: корней нет.