Тільки по графіку можна одразу вказати, при яких значеннях аргументу значення функції додатні
Приклад: Використовуючи графік функції у = х2 – 1, де -3 ≤ х ≤ 2, знайти значення аргументу, при яких функція набуває додатних значень;
Для значень х таких, що -3 < х < -1, точки графіка розташовані вище осі абсцис. Тому функція набуває додатних значень при -3 < х < -1. Так само вище осі абсцис знаходяться точки графіка для 1 < х < 2. Тому при 1 < х < 2 функція знову набуває додатних значень. Отже, при -3 < х < -1 або 1 < х < 2 функція набуває додатних значень.
С точки зpения банальной эpyдиции каждый индивидyyм, кpитически мотивиpyющий абстpакцию, не может игноpиpовать кpитеpии yтопического сyбьективизма, концептyально интеpпpетиpyя общепpинятые дефанизиpyющие поляpизатоpы, поэтомy консенсyс, достигнyтый диалектической матеpиальной классификацией всеобщих мотиваций в паpадогматических связях пpедикатов, pешает пpоблемy yсовеpшенствования фоpмиpyющих геотpансплантационных квазипyзлистатов всех кинетически коpеллиpyющих аспектов. Исходя из этого, мы пpишли к выводy
sin²x - cos²x = √2/2
Используем основное тригонометрическое тождество.
sin²x - (1 - sin²x) = √2/2
2sin²x - 1 = √2/2
-(1 - 2sin²x) = √2/2
Свернем по формуле косинуса удвоенного аргумента.
-cos2x = √2/2
cos2x = -√2/2
2x = ±arccos(-√2/2) + 2πn, n ∈ Z
2x = ±3π/4 + 2πn, n ∈ Z
x = ±3π/8 + πn, n ∈ Z.