Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов. Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
Ко всем перечисленным условиям подходит квадратичная функция графиком которой является парабола - кривая симметричная оси, проходящей через вершину параболы. На рисунке представлен график функции y=x²-2x-3, удовлетворяющий заданным требованиям. Также заданным условиям может удовлетворять график y=-x²+2x+3, то есть та же парабола, но ветви которой направлены вниз. Значение функции найдено с использованием формулы разложения квадратного трёхчлена на множители: ax²+bx+c=a(x-x₁)(x-x₂) Подставим значения х, при которых у=0 (x+1)(x-3)=x²-2x-3 или -(x+1)(x-3)=-x²+2x+3