Cos^2(x)+sin^(2)x=1 Основное тригонометрическое тождество cos^2(x)=1-sin^2(x) Теперь исходное уравнение можно переписать в виде 2+1-sin^2(x)=2sin(x) Введем новую переменную t=sin(x) 3-t^2=2t -t^2-2t+3=0 D=(-2)^2-4*(-1)*(-3)=16 Корень (D)=4 t1=(2+4)/(-2)=-3 t2=(2-4)/(-2)=1 Итак, вернемся к исходной переменной sin(x)=-3 - Это невозможно, так как область значений синуса от -1 до 1 sin(x)=1 - и тут сразу можно записать x=Пи/2+2Пи*n, где n принадлежит целым числам
Рейс туда-сюда, это два расстояния между пристанями, т.е. катер проплыл 2А, где А - расстояние между пристанями. Когда катер плывёт по течению, то течение плыть катеру, т.е. к собственной скорости катера добавляется скорость течения, т.е. в одном направлении у катера будет скорость 18+2=20 км/ч. А в другую сторону наоборот: течение мешает плыть катеру, т.е. скорость катера против течения будет: 18-2=16 км/ч. Получается первую половину пути-туда, катер проплыл за такое время: А/20, а вторую половину-обратно катер проплыл вот за какое время: А/16. Полное время пути катера 4,5 часа, т.е. можно составить уравнение относительно времени: А/20 + A/16 = 4,5 Приведём к общему знаменателю: A*16+20*A = 45 16*20 10
Решить графически уравнение вида f(x)=g(x), значит построить графики двух функций у=f(x) и у=g(x) и найти точки пересечения этих графиков.
1) Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3. О т в е т. х=-3; х=3.
2) Аналогично
Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2. О т в е т. х=-2; х=2.
cos^2(x)=1-sin^2(x)
Теперь исходное уравнение можно переписать в виде
2+1-sin^2(x)=2sin(x)
Введем новую переменную t=sin(x)
3-t^2=2t
-t^2-2t+3=0
D=(-2)^2-4*(-1)*(-3)=16
Корень (D)=4
t1=(2+4)/(-2)=-3
t2=(2-4)/(-2)=1
Итак, вернемся к исходной переменной
sin(x)=-3 - Это невозможно, так как область значений синуса от -1 до 1
sin(x)=1 - и тут сразу можно записать x=Пи/2+2Пи*n, где n принадлежит целым числам