1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
Пусть х – знаменатель дроби, тогда х-3 – числитель этой дроби, дробь- (x-3)/x К числителю прибавили 3, а к знаменателю 2, получим дробь: (x-3+3)/(x+2)=x/(x+2)
Составим уравнение: х/(x+2)-(x-3)/x=7/40 (приведем к общему знаменателю х*(х+2)): х*x-(x-3)(x+2)=7/40 (x²-x²+3x-2x+6)/x(x-2)=7/40 (x+6)/(x²+2x)=7/40 40*(x+6)/(x²+2x)=7 40x+240=7(x²+2x) 40x+240=7x²-14x 40x+240-7x²-14x=0 26x-240-7x²=0 (умножим на -1) 7x² -26x-240=0 D=b²-4ac=(-26)²+4*7*(-240)=676+6720=7396 x1=-b+√D/2a=-(-26)+√7396/2*7=26+86/14=8 x2=-b-√D/2a=-(-26)-√7396/2*7=26-86/14=-60/14 - не подходит х – знаменатель дроби, х=8, тогда числитель х-3=8-4=5 дробь: 5/8 проверим: было 5/8, стало 8/10 8/10-5/8=(8*4-5*5)/40=7/40 ответ: 5/8
(-9а^3 - 6a^2)^2 = (9a³ + 6a²)² = 81a⁶ + 108a⁵ + 36a⁴