Пусть скорость пешехода х, а скорость велосипедиста у. Время 20 минут=1/3 часа. За это время пешеход расстояние (1/3)х км, а велосипедист - (1/3)у, а сумма этих расстояний равна 12 км. Это первое уравнение. Далее. На весь путь пешеход затратил 12/х часов, а велосипедист - 12/у часов, при этом пешеход затратил на 1 ч 36 мин = 8/5 часа. Это второе уравнение. Составим систему уравнений и решим её: (1/3)х+(1/3)у=12 (1/3)(х+у)=12 х+у=36 х=36-у 12/х-12/у=8/5 12у-12х=(8/5)ху 60(у-х)=8ху |:4 15(у-х)-2ху=0 15(у-36+у)-2(36-у)у=0; 30у-540-72у+2у²=0; 2y²-42у-540=0; у²-21у-270=0; D=(-21)²-4*(-270)=441+1080=1764=42²; у=(21-42)/2=-21/2 - не подходит; у=(21+42)/2=63/2=31,5 км/ч - скорость велосипедиста; х=36-31,5=4,5 км/ч - скорость пешехода.
Системы можно решать двумя (по крайней мере, мне известно лишь два сложением и подстановкой.
Ну, возьмем простенькое
у+х=6, х^2-2у+4=0;
через верхнее уравнение можем подставить в нижнее значение х в нижнее,
то есть:
х=6-у, (6-у)^2-2y+4=0;
дальше решаем нижнее полученное уравнение, выписывая его ниже
(6-у)^2-2y+4=0 36-12у+у^2-2у+4=0 y^2-14y+36=0
потом решаем через дискриминант таким образом мы получаем два корня (если нет никаких ограничений по заданию)
дальше значения у мы подставляем вот в это уравнение, чтобы выявить х то есть сюда х=6-у подставляем сначала первое значение у, а потом и второе считаем и находим два значения х и у (не забываем про знаки в системах! после первого уравнения -- запятая, после второго -- точка с зпт)
а если сложением, то тут обычно нужно еще и подделать одно из уравнений. я пользуюсь практически всегда методом подстановки
но если разбирать сложение, то тоже на простеньком примере
у-х=12 3у+х=22
складываем эти два уравнения и получаем 4у=34 х самоуничтожились, так как -х+х=0 теперь мы можем найти у у=34/4
а потом снова же подставляем это значение в любое уравнение системы и находим х.
S3 = 516
q - ?
S3 = (b1*(1 - q^3))/(1 - q) = 516
(12*(q^3 - 1))/(q - 1) = 516 , q ≠ 1
12(q^3 - 1) = 516(q - 1)
q^3 - 1 = 43(q - 1)
(q - 1)(q^2 + q + 1) - 43(q - 1) = 0
(q - 1)(q^2 +q + 1 - 43) = 0
1) q - 1 = 0
q = 1 (q ≠ 1) по условию
2) q^2 + q - 42 = 0
D = 169
q1 = ( - 1+ 13)/2 = 6
q2 = ( - 1 - 13)/2 = - 7
ответ
- 7; 6