x^2+y^2+2xy+4(x+y)=27
(x+y)^2+4(x+y)+4=31
((x+y)+2)^2=(sqrt(31))^2
(x+y)=-2+sqrt(31) x+y=-2-sqt(31)
1) (x-y)^2-4(x+y)=7
(x-y)^2=7-8+4*sqrt(31)=4*sqrt(31)-1
x-y=sqrt(4*sqrt(31)-1) x-y=-sqrt(4*sqrt(31)-1)
a) x=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
b) x=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
2) вариант x+y=-2-sqt(31)
невозможен, т.к. тогда (х-у)^2<0
ответ : два решения
a) x=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
b) x=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
"Красивого" ответа с этими числами нет.
б1)D=(-1)^2-4*3*18=отрицательное число. Тоже нет решений.
а2) переносим y^2 в правую часть и приравниваем к нулю. Получается квадратное уравнение и считаем
D=52^2-4*(-1)*(-576)=2704-2304=400
y1=(-52+20)/4=8
y2=(-52-20)/4=-18