Понятно, что х - двузначное число. Пусть x=10a+b, где а, b - его цифры. 1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным. 2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак, x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23. Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят. Значит итоговый ответ: число х может быть 50, 44 или 47.
a) Рассмотри график функции y=x^2+3x+3 Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0 D = 9 - 4*3= - 3 Т.к. D = -3 < 0 , Следовательно, график y=x^2+3x+3 не пересекает ось Ох Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру Вычислим дискриминант для уравнения 4x-4x^2-2=0 D = 16 - 4*4*2 = -16 Следовательно, график y=4x-4x^2-2 не пересекает ось Ох Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно
x+pi/2=(-1)^(n+1) * pi/4 +pi*n, n принадлежит Z
ответ: x=(-1)^(n+1) * pi/4 - pi/2 +pi*n, n принадлежит Z