1. Из точек А и В в гранях двугранного угла опущены перпендикуляры АА 1 и ВВ 2 на ребро угла. Найдите длину отрезка АВ , если АА 1 =а , ВВ 1 =b 1 А 1 В 1 =с и двугранный угол равен α1 . Задача решена в учебнике п. 171, стр. 59. 2. У трехгранного угла (аbс ) двугранный угол при ребре с прямой, двугранный угол при ребре b равен ϕ, а плоский угол (bc ) равен γ (ϕ,γ< ). Найдите два других плоских угла α = ∠ (ab ), β = ∠(ас ) Задача решена в учебнике п. 172, стр. 60 3. У трехгранного угла один плоский угол равен γ, а прилегающие к нему двугранные углы равны φ (φ < ). Найдите два других плоских угла α и угол β, который образует плоскость угла γ с противолежащим ребром.
а)(х+7)в кводрате>х(х+14) x²+14x+49>x²+14x 49>0 б)b в кводрате+5>10(b-2) b²+5>10b-20 b²-10b+25>0 (b-5)²>0 при b=5 выполняется равенство 2)Извесно что а>b.Сравните: а)18а и 18b б)-6,7а и -6,7b в)-3,7b и -3,7а Результат сравнения запишите в виде неравенства.
a b БОЛЬШЕ 0 1 18a>18b 2. =-6.7a < -6.7b 3/ -3.7b>-3.7a
3)Оцените периметр и площядь прямоугольника со сторонами а см и b см, если известно, что 1,5<a<1,6 3,2<b<3,3 P=2(a+b) S=ab 9.4<P<9.8 4.8<S<5.28
х=0 или х²-1=0
х²=1
х=1
ответ:0;1
2)4х²-16х+16-х+2=0
4х²-17х+18=0
д=(-17)²-288=1
х1=2 1/4
х2=2