М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
издательство1
издательство1
19.06.2021 02:17 •  Алгебра

Постройте график функции: у=2(х-1)"2 +1

👇
Ответ:
каринка191
каринка191
19.06.2021
Примерно, как-то так. 
Постройте график функции: у=2(х-1)2 +1
4,5(17 оценок)
Открыть все ответы
Ответ:
ctalin123123
ctalin123123
19.06.2021
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел 17 и 25 – среднеарифметическое равно     21 = \frac{ 17 + 25 }{2} \ ,     и при этом 21 на 4 меньше двадцати пяти и на 4 больше семнадцати.

Когда Вася отдаёт Пете 6 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на 6 монет меньше изначального, а у Пети на 6 монет больше изначального. А значит, вначале у Васи было на 12 = 6 + 6 монет больше, чем у Пети.

Путь у Васи вначале x монет. Тогда у Пети x - 12 монет.

В первом случае всё как раз получается правильно:

x - 6 = ( x - 12 ) + 6 \ ;

Во втором случае у Васи-II оказывается x + 9 монет, а у Пети-II будет x - 12 - 9 монет. При этом у Пети-II монет в K раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в K раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:

x + 9 = ( x - 12 - 9 ) K \ ;

x + 9 = ( x - 21 ) K \ ;

Далее это целочисленное уравнение можно решить двумя

[[[ 1-ый

K = \frac{ x + 9 }{ x - 21 } = \frac{ x - 21 + 21 + 9 }{ x - 21 } = \frac{ x - 21 + 30 }{ x - 21 } = \frac{ x - 21 }{ x - 21 } + \frac{30}{ x - 21 } = 1 + \frac{30}{ x - 21 } \ ;

K = 1 + \frac{30}{ x - 21 } \ ;

Чтобы K было целым, целой должен быть и результат деления в дроби, а чтобы K было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда     x - 21 = 1 \ ,     откуда:

x = 22 \ ; K = 31 \ ;

[[[ 2-ой

x + 9 = K x - 21 K \ ;

9 + 21 K = ( K - 1 ) x \ ;

x = \frac{ 9 + 21 K }{ K - 1 } = \frac{ 9 + 21 ( K - 1 + 1 ) }{ K - 1 } \ = \frac{ 9 + 21 ( K - 1 ) + 21 }{ K - 1 } = \frac{ 30 + 21 ( K - 1 ) }{ K - 1 } = \\\\ = \frac{30}{ K - 1 } + \frac{ 21 ( K - 1 ) }{ K - 1 } = \frac{30}{ K - 1 } + 21 \ ;

x = \frac{30}{ K - 1 } + 21 \ ;

Чтобы x было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет K - 1 = 30 \ , откуда:

K = 31 \ ; x = 22 \ ;

О т в е т : K = 31 \ .
4,6(60 оценок)
Ответ:
пушокс
пушокс
19.06.2021

а) (b + 8)(b – 3)=b²-3b+8b-24=b²+5b-24; в) (a + 4)(a² – 6a + 2)=

a³-6a²+2a+4a²-24a+8=a³-2a²-22a+8
б) (6p – q)(3p + 5q)=18p²+30pq-3pq-5q²=18p²+27pq-5q²
2. Разложите на множители:
а) a(x + y) – 5(x + y)=(x+y)(a-5);

б) 5a – 5b + da – db=5(a-b)+d(a-b)=(a-b)(5+d)
3. Упростите выражение mn(m – n) – (m² – n²)(2m + n)=

=mn(m – n) – (m – n)(m+n)(2m + n)=(m-n)(mn-(m+n)(2m+n))=

(m-n)(mn-2m²-mn-2mn-n²)=(m-n)(-2m²-2mn-n²)=-(m-n)(2m²+2mn+n²)
 4. Докажите тождество b(b – 3) – 18 = (b + 3)(b – 6)

b²-3b-18= b²-6b+3b-18 ⇒b²-3b-18=b²-3b-18
 5. Длина прямоугольника в 3 раза больше его ширины. Если длину увеличить на 2 м, а ширину – на 3 м, то площадь его увеличится на 72 м2. Найдите длину и ширину прямоугольника.

Пусть ширина х, тогда длина 3х. Площадь - 3х² После изменений ширина  стала х+3, а длина 3х+2 площадь стала (х+3)(3х+2) =3х²+72

3x²+2x+9x+6=3х²+72⇒11x=72-6⇒11x=66 ⇒ x=6 - это ширина, длина 3*6=18

4,5(73 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ